forked from explosion/prodigy-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.py
216 lines (178 loc) · 6.71 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# coding: utf8
from __future__ import unicode_literals
import pytest
import tempfile
from contextlib import contextmanager
from prodigy.components.db import connect
from prodigy.util import write_jsonl, INPUT_HASH_ATTR, TASK_HASH_ATTR
from prodigy.models.ner import merge_spans
from ner.ner_teach import ner_teach
from ner.ner_match import ner_match
from ner.ner_manual import ner_manual
from ner.ner_make_gold import ner_make_gold
from ner.ner_silver_to_gold import ner_silver_to_gold
from textcat.textcat_teach import textcat_teach
from textcat.textcat_custom_model import textcat_custom_model
from terms.terms_teach import terms_teach
from image.image_manual import image_manual
from other.mark import mark
from other.choice import choice
@pytest.fixture()
def dataset():
return False
@pytest.fixture
def spacy_model():
return 'en_core_web_sm'
@pytest.fixture
def vectors():
return 'en_core_web_md'
@pytest.fixture
def labels():
return ['PERSON', 'ORG']
@pytest.fixture()
def source():
texts = ['This is a text about David Bowie', 'Apple makes iPhones']
examples = [{'text': text} for text in texts]
_, tmp_file = tempfile.mkstemp()
write_jsonl(tmp_file, examples)
return tmp_file
@pytest.fixture()
def patterns():
examples = [{'label': 'PERSON', 'pattern': 'David Bowie'},
{'label': 'ORG', 'pattern': [{'lower': 'apple'}]}]
_, tmp_file = tempfile.mkstemp()
write_jsonl(tmp_file, examples)
return tmp_file
@contextmanager
def tmp_dataset(name, examples=[]):
DB = connect()
DB.add_dataset(name)
DB.add_examples(examples, datasets=[name])
yield examples
DB.drop_dataset(name)
def test_ner_teach(dataset, spacy_model, source, labels, patterns):
recipe = ner_teach(dataset, spacy_model, source, labels, patterns)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'ner'
assert recipe['dataset'] == dataset
assert len(stream) == 5
assert 'spans' in stream[0]
assert 'tokens' in stream[0]
assert 'meta' in stream[0]
assert 'score' in stream[0]['meta']
def test_ner_match(dataset, spacy_model, source, patterns):
recipe = ner_match(dataset, spacy_model, source, patterns)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'ner'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert 'spans' in stream[0]
assert len(stream[0]['spans']) == 1
assert stream[0]['spans'][0]['label'] == 'PERSON'
assert 'spans' in stream[1]
assert len(stream[1]['spans']) == 1
assert stream[1]['spans'][0]['label'] == 'ORG'
def test_ner_manual(dataset, spacy_model, source, labels):
recipe = ner_manual(dataset, spacy_model, source, labels)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'ner_manual'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert 'tokens' in stream[0]
assert 'tokens' in stream[1]
def test_ner_make_gold(dataset, spacy_model, source, labels):
recipe = ner_make_gold(dataset, spacy_model, source, labels)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'ner_manual'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert 'spans' in stream[0]
assert 'tokens' in stream[0]
def test_ner_silver_to_gold(dataset, spacy_model):
silver_dataset = '__test_ner_silver_to_gold__'
silver_examples = [
{
INPUT_HASH_ATTR: 1,
TASK_HASH_ATTR: 11,
'text': 'Hello world',
'answer': 'accept',
'spans': [{'start': 0, 'end': 5, 'label': 'PERSON'}]
},
{
INPUT_HASH_ATTR: 1,
TASK_HASH_ATTR: 12,
'text': 'Hello world',
'answer': 'reject',
'spans': [{'start': 6, 'end': 11, 'label': 'PERSON'}]
},
{
INPUT_HASH_ATTR: 2,
TASK_HASH_ATTR: 21,
'text': 'This is a test',
'answer': 'reject',
'spans': [{'start': 5, 'end': 7, 'label': 'ORG'}]
}
]
with tmp_dataset(silver_dataset, silver_examples):
recipe = ner_silver_to_gold(silver_dataset, dataset, spacy_model)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'ner_manual'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert stream[0]['text'] == 'Hello world'
assert 'tokens' in stream[0]
assert stream[1]['text'] == 'This is a test'
assert 'tokens' in stream[1]
def test_textcat_teach(dataset, spacy_model, source, labels, patterns):
recipe = textcat_teach(dataset, spacy_model, source, labels, patterns)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'classification'
assert recipe['dataset'] == dataset
assert len(stream) >= 2
assert 'label' in stream[0]
assert 'meta' in stream[0]
assert 'score' in stream[0]['meta']
def test_textcat_custom_model(dataset, source, labels):
recipe = textcat_custom_model(dataset, source, labels)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'classification'
assert recipe['dataset'] == dataset
assert len(stream) >= 1
assert 'label' in stream[0]
def test_terms_teach(dataset, vectors):
seeds = ['cat', 'dog', 'mouse']
recipe = terms_teach(dataset, vectors, seeds)
assert recipe['view_id'] == 'text'
assert recipe['dataset'] == dataset
def test_image_manual(dataset):
img_dir = tempfile.mkdtemp()
img1 = tempfile.NamedTemporaryFile(dir=img_dir, prefix='1', suffix='.jpg')
img2 = tempfile.NamedTemporaryFile(dir=img_dir, prefix='2', suffix='.png')
no_img = tempfile.NamedTemporaryFile(dir=img_dir, prefix='3', suffix='.txt')
recipe = image_manual(dataset, img_dir, ['PERSON', 'DOG', 'CAT'])
stream = list(recipe['stream'])
assert recipe['view_id'] == 'image_manual'
assert recipe['dataset'] == dataset
assert len(stream) == 2
def test_mark(dataset, source):
view_id = 'text'
recipe = mark(dataset, source, view_id)
stream = list(recipe['stream'])
assert recipe['view_id'] == view_id
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert hasattr(recipe['update'], '__call__')
assert hasattr(recipe['on_load'], '__call__')
assert hasattr(recipe['on_exit'], '__call__')
def test_choice(dataset, source):
options = ['OPTION_A', 'OPTION_B', 'OPTION_C']
recipe = choice(dataset, source, options)
stream = list(recipe['stream'])
assert recipe['view_id'] == 'choice'
assert recipe['dataset'] == dataset
assert len(stream) == 2
assert 'options' in stream[0]
assert len(stream[0]['options']) == 3
assert stream[0]['options'][0]['id'] == 'OPTION_A'
assert recipe['config']['choice_style'] == 'single'
assert recipe['config']['choice_auto_accept']