forked from WongKinYiu/yolov9
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdetect_and aim.py
361 lines (306 loc) · 19.2 KB
/
detect_and aim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import argparse
import os
import platform
import sys
from pathlib import Path
from llm import get_response
import torch
import pyttsx3
engine = pyttsx3.init()
voices = engine.getProperty('voices')
# Set voice to a different one
engine.setProperty('voice', voices[0].id)
def speak(text):
engine.say(text)
engine.runAndWait()
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLO root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode
def count(founded_classes,im0):
model_values=[]
aligns=im0.shape
align_bottom=aligns[0]
align_right=(aligns[1]/1.7 )
for i, (k, v) in enumerate(founded_classes.items()):
a=f"{k} = {v}"
model_values.append(v)
align_bottom=align_bottom-35
cv2.putText(im0, str(a) ,(int(align_right),align_bottom), cv2.FONT_HERSHEY_SIMPLEX, 1,(45,255,255),1,cv2.LINE_AA)
@smart_inference_mode()
def run(
weights=ROOT / 'yolo.pt', # model path or triton URL
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
data=ROOT / 'data/coco.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride,
photo_distance=10
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
screenshot = source.lower().startswith('screen')
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
# NMS
with dt[2]:
pred = non_max_suppression(pred[0][0], conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
#pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
founded_classes={}
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
class_index=int(c)
count_of_object=int(n)
founded_classes[names[class_index]]=int(n)
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
count(founded_classes=founded_classes,im0=imc)
print("found_classes",founded_classes)
censored=eval(get_response(founded_classes))
# Write results
for *xyxy, conf, cls in reversed(det):
#..................................................................
crop_obj = im0[int(xyxy[1]):int(xyxy[3]),int(xyxy[0]):int(xyxy[2])]
height, width, _ = crop_obj.shape
# Calculate the edges
left_edge = (0, height // 2)
right_edge = (width - 1, height // 2)
top_edge = (width // 2, 0)
bottom_edge = (width // 2, height - 1)
# Calculate the middle point
middle_point = (width // 2, height // 2)
#print("Left Edge:", left_edge)
##print("Right Edge:", right_edge)
##print("Top Edge:", top_edge)
#print("Bottom Edge:", bottom_edge)
#print("Middle Point:", middle_point)
barrel_point = (880, 2820)
distance = ((middle_point[0] - barrel_point[0]) ** 2 + (middle_point[1] - barrel_point[1]) ** 2) ** 0.5
#print(f"Object: {names[int(cls)]}, Middle Point: {middle_point}, Distance from Barrel: {distance:.2f} pixels")
#print( photo_distance,"photo_distance")
known_object_size_pixels = (photo_distance)*100 # Measure this in your image----------------------------------------------------------------------------------------------------
known_object_size_meters = 0.5 # Known real-world size
scale = known_object_size_pixels / known_object_size_meters # pixels per meter
#print("known_object_size_pixels",known_object_size_pixels)
# Your existing code with modifications
def get_relocation_instructions(barrel_point, target_point, scale):
# Calculate pixel differences
dx_pixels = target_point[0] - barrel_point[0]
dy_pixels = barrel_point[1] - target_point[1] # Reversed because y increases downwards in image coordinates
scale=scale*10
dx_meters = dx_pixels / scale
dy_meters = dy_pixels / scale
# Convert to centimeters and round to nearest cm
dx_cm = round(dx_meters * 100)
dy_cm = round(dy_meters * 100)
# Generate instructions
instructions = []
if abs(dx_cm) > 0:
direction = "right" if dx_cm > 0 else "left"
instructions.append(f"Move the barrel {(abs(dx_cm))-2} cm {direction}")
if abs(dy_cm) > 0:
direction = "up" if dy_cm > 0 else "down"
instructions.append(f"Move the barrel {abs(dy_cm)} cm {direction}")
return instructions
if names[int(cls)] in censored:
middle_point = ((int(xyxy[0]) + int(xyxy[2])) // 2, (int(xyxy[1]) + int(xyxy[3])) // 2)
cv2.line(im0, barrel_point, middle_point, color=(0, 255, 0), thickness=2) # Green line with thickness 2
cv2.circle(im0, middle_point, radius=5, color=(0, 0, 255), thickness=-1)
blurratio = 15 # You can adjust this value based on the desired blur effect
blur = cv2.blur(crop_obj, (blurratio, blurratio))
im0[int(xyxy[1]):int(xyxy[3]), int(xyxy[0]):int(xyxy[2])] = blur
# Calculate distance in pixels
distance_pixels = ((middle_point[0] - barrel_point[0]) ** 2 + (middle_point[1] - barrel_point[1]) ** 2) ** 0.5
# Convert distance to meters
distance_meters = distance_pixels / scale
print(f"Object: {names[int(cls)]}, Middle Point: {middle_point}, Distance from Barrel: {distance_meters:.2f} meters")
# Optionally, you can also display the distance on the image
cv2.putText(im0, f"{distance_meters:.2f}m", (middle_point[0], middle_point[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
instructions = get_relocation_instructions(barrel_point, middle_point, scale)
# Display distance on the image
cv2.putText(im0, f"{distance_meters:.2f}m", (middle_point[0], middle_point[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
# Display instructions on the image
for i, instruction in enumerate(instructions):
cv2.putText(im0, instruction, (10, 30 + i*30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
# Print instructions to console
print("Barrel relocation instructions:")
for instruction in instructions:
print(instruction)
speak(instruction)
#blur = cv2.blur(crop_obj,(blurratio,blurratio))
#im0[int(xyxy[1]):int(xyxy[3]),int(xyxy[0]):int(xyxy[2])] = blur
#..................................................................
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(f'{txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == 'Linux' and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
# Print results
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path or triton URL')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--photo-distance', type=float, default=10, help='distance in meters')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)