-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathWidefield_dftregistration.m
210 lines (191 loc) · 7.87 KB
/
Widefield_dftregistration.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
function [output, Greg] = Widefield_dftregistration(buf1ft,buf2ft,usfac)
% function [output Greg] = dftregistration(buf1ft,buf2ft,usfac);
% Efficient subpixel image registration by crosscorrelation. This code
% gives the same precision as the FFT upsampled cross correlation in a
% small fraction of the computation time and with reduced memory
% requirements. It obtains an initial estimate of the crosscorrelation peak
% by an FFT and then refines the shift estimation by upsampling the DFT
% only in a small neighborhood of that estimate by means of a
% matrix-multiply DFT. With this procedure all the image points are used to
% compute the upsampled crosscorrelation.
% Manuel Guizar - Dec 13, 2007
% Portions of this code were taken from code written by Ann M. Kowalczyk
% and James R. Fienup.
% J.R. Fienup and A.M. Kowalczyk, "Phase retrieval for a complex-valued
% object by using a low-resolution image," J. Opt. Soc. Am. A 7, 450-458
% (1990).
% Citation for this algorithm:
% Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup,
% "Efficient subpixel image registration algorithms," Opt. Lett. 33,
% 156-158 (2008).
% Inputs
% buf1ft Fourier transform of reference image,
% DC in (1,1) [DO NOT FFTSHIFT]
% buf2ft Fourier transform of image to register,
% DC in (1,1) [DO NOT FFTSHIFT]
% usfac Upsampling factor (integer). Images will be registered to
% within 1/usfac of a pixel. For example usfac = 20 means the
% images will be registered within 1/20 of a pixel. (default = 1)
% Outputs
% output = [error,diffphase,net_row_shift,net_col_shift]
% error Translation invariant normalized RMS error between f and g
% diffphase Global phase difference between the two images (should be
% zero if images are non-negative).
% net_row_shift net_col_shift Pixel shifts between images
% Greg (Optional) Fourier transform of registered version of buf2ft,
% the global phase difference is compensated for.
% Default usfac to 1
if exist('usfac')~=1, usfac=1; end
% Compute error for no pixel shift
if usfac == 0,
CCmax = sum(sum(buf1ft.*conj(buf2ft)));
rfzero = sum(abs(buf1ft(:)).^2);
rgzero = sum(abs(buf2ft(:)).^2);
error = 1.0 - CCmax.*conj(CCmax)/(rgzero*rfzero);
error = sqrt(abs(error));
diffphase=atan2(imag(CCmax),real(CCmax));
output=[error,diffphase];
% Whole-pixel shift - Compute crosscorrelation by an IFFT and locate the
% peak
elseif usfac == 1,
[m,n]=size(buf1ft);
CC = ifft2(buf1ft.*conj(buf2ft));
[max1,loc1] = max(CC);
[max2,loc2] = max(max1);
rloc=loc1(loc2);
cloc=loc2;
CCmax=CC(rloc,cloc);
rfzero = sum(abs(buf1ft(:)).^2)/(m*n);
rgzero = sum(abs(buf2ft(:)).^2)/(m*n);
error = 1.0 - CCmax.*conj(CCmax)/(rgzero(1,1)*rfzero(1,1));
error = sqrt(abs(error));
diffphase=atan2(imag(CCmax),real(CCmax));
md2 = fix(m/2);
nd2 = fix(n/2);
if rloc > md2
row_shift = rloc - m - 1;
else
row_shift = rloc - 1;
end
if cloc > nd2
col_shift = cloc - n - 1;
else
col_shift = cloc - 1;
end
output=[error,diffphase,row_shift,col_shift];
% Partial-pixel shift
else
% First upsample by a factor of 2 to obtain initial estimate
% Embed Fourier data in a 2x larger array
[m,n]=size(buf1ft);
mlarge=m*2;
nlarge=n*2;
CC=zeros(mlarge,nlarge);
CC(m+1-fix(m/2):m+1+fix((m-1)/2),n+1-fix(n/2):n+1+fix((n-1)/2)) = ...
fftshift(buf1ft).*conj(fftshift(buf2ft));
% Compute crosscorrelation and locate the peak
CC = ifft2(ifftshift(CC)); % Calculate cross-correlation
[max1,loc1] = max(CC);
[max2,loc2] = max(max1);
rloc=loc1(loc2);cloc=loc2;
CCmax=CC(rloc,cloc);
% Obtain shift in original pixel grid from the position of the
% crosscorrelation peak
[m,n] = size(CC); md2 = fix(m/2); nd2 = fix(n/2);
if rloc > md2
row_shift = rloc - m - 1;
else
row_shift = rloc - 1;
end
if cloc > nd2
col_shift = cloc - n - 1;
else
col_shift = cloc - 1;
end
row_shift=row_shift/2;
col_shift=col_shift/2;
% If upsampling > 2, then refine estimate with matrix multiply DFT
if usfac > 2,
%%% DFT computation %%%
% Initial shift estimate in upsampled grid
row_shift = round(row_shift*usfac)/usfac;
col_shift = round(col_shift*usfac)/usfac;
dftshift = fix(ceil(usfac*1.5)/2); %% Center of output array at dftshift+1
% Matrix multiply DFT around the current shift estimate
CC = conj(dftups(buf2ft.*conj(buf1ft),ceil(usfac*1.5),ceil(usfac*1.5),usfac,...
dftshift-row_shift*usfac,dftshift-col_shift*usfac))/(md2*nd2*usfac^2);
% Locate maximum and map back to original pixel grid
[max1,loc1] = max(CC);
[max2,loc2] = max(max1);
rloc = loc1(loc2); cloc = loc2;
CCmax = CC(rloc,cloc);
rg00 = dftups(buf1ft.*conj(buf1ft),1,1,usfac)/(md2*nd2*usfac^2);
rf00 = dftups(buf2ft.*conj(buf2ft),1,1,usfac)/(md2*nd2*usfac^2);
rloc = rloc - dftshift - 1;
cloc = cloc - dftshift - 1;
row_shift = row_shift + rloc/usfac;
col_shift = col_shift + cloc/usfac;
% If upsampling = 2, no additional pixel shift refinement
else
rg00 = sum(sum( buf1ft.*conj(buf1ft) ))/m/n;
rf00 = sum(sum( buf2ft.*conj(buf2ft) ))/m/n;
end
error = 1.0 - CCmax.*conj(CCmax)/(rg00*rf00);
error = sqrt(abs(error));
diffphase=atan2(imag(CCmax),real(CCmax));
% If its only one row or column the shift along that dimension has no
% effect. We set to zero.
if md2 == 1,
row_shift = 0;
end
if nd2 == 1,
col_shift = 0;
end
output=[error,diffphase,row_shift,col_shift];
end
% Compute registered version of buf2ft
if (nargout > 1)&&(usfac > 0),
[nr,nc]=size(buf2ft);
Nr = ifftshift([-fix(nr/2):ceil(nr/2)-1]);
Nc = ifftshift([-fix(nc/2):ceil(nc/2)-1]);
[Nc,Nr] = meshgrid(Nc,Nr);
Greg = buf2ft.*exp(i*2*pi*(-row_shift*Nr/nr-col_shift*Nc/nc));
Greg = Greg*exp(i*diffphase);
elseif (nargout > 1)&&(usfac == 0)
Greg = buf2ft*exp(i*diffphase);
end
return
function out=dftups(in,nor,noc,usfac,roff,coff)
% function out=dftups(in,nor,noc,usfac,roff,coff);
% Upsampled DFT by matrix multiplies, can compute an upsampled DFT in just
% a small region.
% usfac Upsampling factor (default usfac = 1)
% [nor,noc] Number of pixels in the output upsampled DFT, in
% units of upsampled pixels (default = size(in))
% roff, coff Row and column offsets, allow to shift the output array to
% a region of interest on the DFT (default = 0)
% Recieves DC in upper left corner, image center must be in (1,1)
% Manuel Guizar - Dec 13, 2007
% Modified from dftus, by J.R. Fienup 7/31/06
% This code is intended to provide the same result as if the following
% operations were performed
% - Embed the array "in" in an array that is usfac times larger in each
% dimension. ifftshift to bring the center of the image to (1,1).
% - Take the FFT of the larger array
% - Extract an [nor, noc] region of the result. Starting with the
% [roff+1 coff+1] element.
% It achieves this result by computing the DFT in the output array without
% the need to zeropad. Much faster and memory efficient than the
% zero-padded FFT approach if [nor noc] are much smaller than [nr*usfac nc*usfac]
[nr,nc]=size(in);
% Set defaults
if exist('roff','var')~=1, roff=0; end
if exist('coff','var')~=1, coff=0; end
if exist('usfac','var')~=1, usfac=1; end
if exist('noc','var')~=1, noc=nc; end
if exist('nor','var')~=1, nor=nr; end
% Compute kernels and obtain DFT by matrix products
kernc=exp((-1i*2*pi/(nc*usfac))*( ifftshift([0:nc-1]).' - floor(nc/2) )*( [0:noc-1] - coff ));
kernr=exp((-1i*2*pi/(nr*usfac))*( [0:nor-1].' - roff )*( ifftshift([0:nr-1]) - floor(nr/2) ));
out=kernr*in*kernc;
return