-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_multi_gpu.py
123 lines (95 loc) · 4.12 KB
/
test_multi_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import time
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
import timm
from models.build_model import build_model
from utils.plot_display import *
from data.datasets import build_loader
from sklearn.metrics import confusion_matrix, classification_report
from utils.metric import evaluate_accuracy
def test(model, data_loader, classes):
n = len(data_loader.dataset)
#print(n)
batch_num = len(data_loader)
print('Total Train batch num is: {}'.format(batch_num))
y_pred = np.empty((n), dtype=int)
y_true = np.empty((n), dtype=int)
index = 0
mis_imgs = []
with torch.no_grad():
for batch_idx, (image, target, img_path) in enumerate(data_loader):
image, target = image.cuda(), target.cuda()
output = model(image)
scope = image.size(0) # batch num
_, preds = torch.max(output, 1)
mis_cls = torch.ne(preds, target)
#print(mis_cls)
mis_cls_index_list = torch.nonzero(mis_cls).squeeze(1).tolist()
#print(mis_cls_index_list)
if mis_cls_index_list:
for mis_cls_index in mis_cls_index_list:
mis_imgs.append(img_path[mis_cls_index])
else:
print('Batch {} all correct!'.format(batch_idx))
y_pred[index : index+scope] = preds.view(-1).cpu().numpy()
y_true[index : index+scope] = target.detach().cpu().numpy()
index += scope
return y_pred, y_true, mis_imgs
def main(args):
print("Creating data loaders")
_, test_loader = build_loader(args.data_dir, args.input_size, args.batch_size, args.num_workers)
# show all classes
classes = test_loader.dataset.classes
print(classes)
if args.hub == 'tv':
model = build_model(args.net, pretrained=False, fine_tune=False, num_classes=len(classes))
elif args.hub == 'timm':
#print(timm.list_models(pretrained=True))
model = timm.create_model(args.net, pretrained=False, num_classes=len(classes))
else:
raise NameError('Model hub only support tv or timm')
# support muti gpu
model = nn.DataParallel(model, device_ids=args.device)
model.load_state_dict(torch.load(args.checkpoint)['model_state_dict'])
model.cuda()
model.eval()
bg_time = time.time()
y_pred, y_true, mis_cls_images = test(model, test_loader, classes)
total_time = time.time() - bg_time
print(f'Total used time:{total_time}')
print()
cnf_matrix = confusion_matrix(y_true, y_pred)
print(cnf_matrix)
print()
# Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=classes, normalize=True,
title='Normalized confusion matrix')
os.makedirs('plt_images') if not os.path.exists('plt_images') else None
plt.savefig('./plt_images/test_confusion_matrix.jpg')
plt.show()
print()
report = classification_report(y_true, y_pred, labels=range(len(classes)), output_dict=True)
print(report)
print()
print('All Miss Classified Images are:')
for i, image in enumerate(mis_cls_images):
print('{}\t{}'.format(i+1, image))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='PyTorch Classification Test')
parser.add_argument('--data-dir', default='/data/beauty', help='dataset')
parser.add_argument('--hub', default='tv', help='model hub, from torchvision(tv) or timm')
parser.add_argument('--net', default='efficientnet_b6', help='model name')
parser.add_argument('--device', default=[0], help='device')
parser.add_argument('-b', '--batch-size', default=32, type=int, help='batch size')
parser.add_argument('-j', '--num-workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('--checkpoint', default='exps/efficientnetb6/efficientnet_b6@epoch7_3199_0.01.pth', help='checkpoint')
parser.add_argument('--input-size', default=224, type=int, help='size of input')
args = parser.parse_args()
print(args)
main(args)