-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_IMDB.py
180 lines (161 loc) · 8.53 KB
/
run_IMDB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import time
import argparse
import torch.nn.functional as F
import torch.sparse
import numpy as np
import dgl
from utils.pytorchtools import EarlyStopping
from utils.data import load_IMDB_data
from utils.tools import evaluate_results_nc
from model import MAGNN_nc
# Params
out_dim = 3
dropout_rate = 0.5
lr = 0.005
weight_decay = 0.001
etypes_lists = [[[0, 1], [2, 3]],
[[1, 0], [1, 2, 3, 0]],
[[3, 2], [3, 0, 1, 2]]]
def run_model_IMDB(feats_type, num_layers, hidden_dim, num_heads, attn_vec_dim, rnn_type,
num_epochs, patience, repeat, save_postfix):
nx_G_lists, edge_metapath_indices_lists, features_list, adjM, type_mask, labels, train_val_test_idx = load_IMDB_data()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
features_list = [torch.FloatTensor(features.todense()).to(device) for features in features_list]
if feats_type == 0:
in_dims = [features.shape[1] for features in features_list]
elif feats_type == 1:
in_dims = [features_list[0].shape[1]] + [10] * (len(features_list) - 1)
for i in range(1, len(features_list)):
features_list[i] = torch.zeros((features_list[i].shape[0], 10)).to(device)
elif feats_type == 2:
in_dims = [features.shape[0] for features in features_list]
in_dims[0] = features_list[0].shape[1]
for i in range(1, len(features_list)):
dim = features_list[i].shape[0]
indices = np.vstack((np.arange(dim), np.arange(dim)))
indices = torch.LongTensor(indices)
values = torch.FloatTensor(np.ones(dim))
features_list[i] = torch.sparse.FloatTensor(indices, values, torch.Size([dim, dim])).to(device)
elif feats_type == 3:
in_dims = [features.shape[0] for features in features_list]
for i in range(len(features_list)):
dim = features_list[i].shape[0]
indices = np.vstack((np.arange(dim), np.arange(dim)))
indices = torch.LongTensor(indices)
values = torch.FloatTensor(np.ones(dim))
features_list[i] = torch.sparse.FloatTensor(indices, values, torch.Size([dim, dim])).to(device)
edge_metapath_indices_lists = [[torch.LongTensor(indices).to(device) for indices in indices_list] for indices_list in
edge_metapath_indices_lists]
labels = torch.LongTensor(labels).to(device)
g_lists = []
for nx_G_list in nx_G_lists:
g_lists.append([])
for nx_G in nx_G_list:
g = dgl.DGLGraph(multigraph=True)
g.add_nodes(nx_G.number_of_nodes())
g.add_edges(*list(zip(*sorted(map(lambda tup: (int(tup[0]), int(tup[1])), nx_G.edges())))))
g_lists[-1].append(g)
train_idx = train_val_test_idx['train_idx']
val_idx = train_val_test_idx['val_idx']
test_idx = train_val_test_idx['test_idx']
svm_macro_f1_lists = []
svm_micro_f1_lists = []
nmi_mean_list = []
nmi_std_list = []
ari_mean_list = []
ari_std_list = []
for _ in range(repeat):
net = MAGNN_nc(num_layers, [2, 2, 2], 4, etypes_lists, in_dims, hidden_dim, out_dim, num_heads, attn_vec_dim,
rnn_type, dropout_rate)
net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay)
target_node_indices = np.where(type_mask == 0)[0]
# training loop
net.train()
early_stopping = EarlyStopping(patience=patience, verbose=True, save_path='checkpoint/checkpoint_{}.pt'.format(save_postfix))
dur1 = []
dur2 = []
dur3 = []
for epoch in range(num_epochs):
t0 = time.time()
# training forward
net.train()
logits, embeddings = net((g_lists, features_list, type_mask, edge_metapath_indices_lists), target_node_indices)
logp = F.log_softmax(logits, 1)
train_loss = F.nll_loss(logp[train_idx], labels[train_idx])
t1 = time.time()
dur1.append(t1 - t0)
# autograd
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
t2 = time.time()
dur2.append(t2 - t1)
# validation forward
net.eval()
with torch.no_grad():
logits, embeddings = net((g_lists, features_list, type_mask, edge_metapath_indices_lists), target_node_indices)
logp = F.log_softmax(logits, 1)
val_loss = F.nll_loss(logp[val_idx], labels[val_idx])
t3 = time.time()
dur3.append(t3 - t2)
# print info
print(
"Epoch {:05d} | Train_Loss {:.4f} | Val_Loss {:.4f} | Time1(s) {:.4f} | Time2(s) {:.4f} | Time3(s) {:.4f}".format(
epoch, train_loss.item(), val_loss.item(), np.mean(dur1), np.mean(dur2), np.mean(dur3)))
# early stopping
early_stopping(val_loss, net)
if early_stopping.early_stop:
print('Early stopping!')
break
# testing with evaluate_results_nc
net.load_state_dict(torch.load('checkpoint/checkpoint_{}.pt'.format(save_postfix)))
net.eval()
with torch.no_grad():
logits, embeddings = net((g_lists, features_list, type_mask, edge_metapath_indices_lists), target_node_indices)
svm_macro_f1_list, svm_micro_f1_list, nmi_mean, nmi_std, ari_mean, ari_std = evaluate_results_nc(
embeddings[test_idx].cpu().numpy(), labels[test_idx].cpu().numpy(), num_classes=out_dim)
svm_macro_f1_lists.append(svm_macro_f1_list)
svm_micro_f1_lists.append(svm_micro_f1_list)
nmi_mean_list.append(nmi_mean)
nmi_std_list.append(nmi_std)
ari_mean_list.append(ari_mean)
ari_std_list.append(ari_std)
# print out a summary of the evaluations
svm_macro_f1_lists = np.transpose(np.array(svm_macro_f1_lists), (1, 0, 2))
svm_micro_f1_lists = np.transpose(np.array(svm_micro_f1_lists), (1, 0, 2))
nmi_mean_list = np.array(nmi_mean_list)
nmi_std_list = np.array(nmi_std_list)
ari_mean_list = np.array(ari_mean_list)
ari_std_list = np.array(ari_std_list)
print('----------------------------------------------------------------')
print('SVM tests summary')
print('Macro-F1: ' + ', '.join(['{:.6f}~{:.6f} ({:.1f})'.format(
macro_f1[:, 0].mean(), macro_f1[:, 1].mean(), train_size) for macro_f1, train_size in
zip(svm_macro_f1_lists, [0.8, 0.6, 0.4, 0.2])]))
print('Micro-F1: ' + ', '.join(['{:.6f}~{:.6f} ({:.1f})'.format(
micro_f1[:, 0].mean(), micro_f1[:, 1].mean(), train_size) for micro_f1, train_size in
zip(svm_micro_f1_lists, [0.8, 0.6, 0.4, 0.2])]))
print('K-means tests summary')
print('NMI: {:.6f}~{:.6f}'.format(nmi_mean_list.mean(), nmi_std_list.mean()))
print('ARI: {:.6f}~{:.6f}'.format(ari_mean_list.mean(), ari_std_list.mean()))
if __name__ == '__main__':
ap = argparse.ArgumentParser(description='MRGNN testing for the IMDB dataset')
ap.add_argument('--feats-type', type=int, default=2,
help='Type of the node features used. ' +
'0 - loaded features; ' +
'1 - only target node features (zero vec for others); ' +
'2 - only target node features (id vec for others); ' +
'3 - all id vec. Default is 2.')
ap.add_argument('--layers', type=int, default=2, help='Number of layers. Default is 2.')
ap.add_argument('--hidden-dim', type=int, default=64, help='Dimension of the node hidden state. Default is 64.')
ap.add_argument('--num-heads', type=int, default=8, help='Number of the attention heads. Default is 8.')
ap.add_argument('--attn-vec-dim', type=int, default=128, help='Dimension of the attention vector. Default is 128.')
ap.add_argument('--rnn-type', default='RotatE0', help='Type of the aggregator. Default is RotatE0.')
ap.add_argument('--epoch', type=int, default=100, help='Number of epochs. Default is 100.')
ap.add_argument('--patience', type=int, default=10, help='Patience. Default is 10.')
ap.add_argument('--repeat', type=int, default=1, help='Repeat the training and testing for N times. Default is 1.')
ap.add_argument('--save-postfix', default='IMDB', help='Postfix for the saved model and result. Default is IMDB.')
args = ap.parse_args()
run_model_IMDB(args.feats_type, args.layers, args.hidden_dim, args.num_heads, args.attn_vec_dim, args.rnn_type,
args.epoch, args.patience, args.repeat, args.save_postfix)