-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix_mulitplication.py
223 lines (191 loc) · 8.57 KB
/
matrix_mulitplication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Algorithm to multiply two matrices using MPI
# Note: Initialisation can be done by one processor and later the same processor can start doing work. Another option (if you're reading from a file, use different processors to read from different parts of the file)
from mpi4py import MPI
import numpy as np
from math import floor
from helper_functions import *
world = MPI.COMM_WORLD
rank = world.Get_rank()
nProcs = world.Get_size() # for now, this will be 4
C_size = np.array([1,1],dtype='i'); # something arbitrary
A_block_size = np.array([0, 0],dtype='i') # something arbitrary
B_block_size = np.array([0, 0],dtype='i') # something arbitrary
C_block_size = np.array([0, 0],dtype='i') # something arbitrary
length_of_matrices = np.array([1],dtype='i'); # something arbitrary
if (rank == 0):
print("Initialising matrices")
[A,B] = init_input_matrices([50,50],[50,50])
# print A
# print B
A_size = np.shape(A);
B_size = np.shape(B);
if A_size[1] != B_size[0]:
print("Matrices cannot be multiplied")
exit(1)
else:
length_of_matrices[0] = A_size[1]
C_act = A.dot(B)
C_size = np.array([A_size[0],B_size[1]],dtype='i')
C = np.zeros(C_size,dtype='d')
for i in range(1,nProcs):
world.Send([C_size,MPI.INT],dest=i,tag=1)
world.Send([length_of_matrices,MPI.INT],dest=i,tag=2)
else:
world.Recv([C_size,MPI.INT],source=0)
world.Recv([length_of_matrices,MPI.INT],source=0)
[iProcs,jProcs] = get_procs(C_size,nProcs);
length_of_matrices = int(length_of_matrices)
if rank == 0:
print("Initialisation completed. Processors allocated.")
C_block_size[0] = C_size[0]/iProcs
C_block_size[1] = C_size[1]/jProcs
A_block_size[0] = C_block_size[0]
B_block_size[1] = C_block_size[1]
# # modified fox
# # By rules of matrix product, A_block_size[1] must always equal B_block_size[0]. This value can be anything! Probably must be optimised based on number of processors, length_of_matrices etc... For now, pick it to be such that at least one of the blocks are going to be square. But this is arbitrary.
#
# no_of_steps = 1; # arbitrary Initialisation
# if A_block_size[0] >= B_block_size[1] and length_of_matrices%A_block_size[0]==0:
# no_of_steps = length_of_matrices/A_block_size[0]
# elif length_of_matrices%B_block_size[1] == 0:
# no_of_steps = length_of_matrices/B_block_size[1]
# elif iProcs >= jProcs and length_of_matrices%iProcs == 0:
# no_of_steps = length_of_matrices/iProcs
# elif length_of_matrices%jProcs == 0:
# no_of_steps = length_of_matrices/jProcs
# elif length_of_matrices%nProcs == 0:
# no_of_steps = length_of_matrices/nProcs # no physical reason behind this?
# else:
# no_of_steps = length_of_matrices # mostly worst case. block size is 1
if rank == 0 and nProcs == 1:
print("No. of processors = 1. Directly multiplying.")
# for i in range(C_size[0]):
# for j in range(C_size[1]):
# for k in range(length_of_matrices):
# C[i][j] = C[i][j] + A[i][k]*B[k][j]
C = A.dot(B)
print("c_calc",C)
print("c_act",C_act)
print(np.amax(np.abs(C-C_act)))
exit(0)
if rank == 0:
print("No. of processors > 1. Proceeding to MPI execution.")
if length_of_matrices%iProcs != 0:
print("Fox Algorithm not applicable!")
exit(1)
B_block_size[0] = length_of_matrices/iProcs
A_block_size[1] = B_block_size[0]
no_of_steps = length_of_matrices/A_block_size[1]
if rank==0:
print("Block sizes for A,B,C matrices are: ")
print A_block_size
print B_block_size
print C_block_size
# basically, the time will scale linearly with the length of the matrix at this stage...
# Sending Array A to the processors
# First initialise a local A row for each processor
A_local_row = np.zeros((A_block_size[0],length_of_matrices),dtype='d')
if rank == 0:
print("Communicating A to all processors.")
if (rank == 0):
for proc_id in range(nProcs):
rank_tag = 100 + proc_id
rowblock_to_send = proc_id//jProcs
i_start_index = rowblock_to_send*A_block_size[0]
i_end_index = C_size[0]
if(rowblock_to_send != iProcs-1):
i_end_index = i_start_index+A_block_size[0]
i_lim = np.arange(i_start_index,i_end_index,dtype='i')
j_lim = np.arange(length_of_matrices,dtype='i')
if proc_id == 0:
A_local_row = A[np.ix_(i_lim,j_lim)]
else:
world.Send([A[np.ix_(i_lim,j_lim)],MPI.DOUBLE],dest=proc_id, tag=rank_tag)
if (rank != 0):
world.Recv([A_local_row,MPI.DOUBLE],source=0,tag=(100+rank))
# Sending Array B to the processors
# First initialise a local block B for each processor
B_local_block = np.zeros((B_block_size[0],B_block_size[1]),dtype='d')
if rank == 0:
print("Communicating B to all processors.")
if (rank == 0):
for proc_id in range(nProcs):
rank_tag = 200 + proc_id
rowblock_to_send = proc_id//jProcs
colblock_to_send = proc_id%jProcs
i_start_index = rowblock_to_send*B_block_size[0]
i_end_index = length_of_matrices
if(rowblock_to_send != iProcs-1):
i_end_index = i_start_index+B_block_size[0]
j_start_index = colblock_to_send*B_block_size[1]
j_end_index = C_size[1]
if(colblock_to_send != jProcs-1):
j_end_index = j_start_index+B_block_size[1]
j_lim = np.arange(j_start_index,j_end_index,dtype='i')
i_lim = np.arange(i_start_index,i_end_index,dtype='i')
if proc_id == 0:
B_local_block = B[np.ix_(i_lim,j_lim)]
else:
# print(np.size(B[np.ix_(i_lim,j_lim)]))
world.Send([B[np.ix_(i_lim,j_lim)],MPI.DOUBLE],dest=proc_id, tag=rank_tag)
if (rank != 0):
world.Recv([B_local_block,MPI.DOUBLE],source=0,tag=(200+rank))
# We don't have to do anything with C because we're going to write to only a particular value of C in each processor
C_local_block = np.zeros((C_block_size[0],C_block_size[1]),dtype='d')
# We have to initialise local A block
def refresh_A_block(rank,jProcs,A_block_size,A_local_row):
A_block_number = rank//jProcs
i_lim = np.arange(A_block_size[0],dtype='i')
j_start_index = A_block_number*A_block_size[1]
j_end_index = j_start_index+A_block_size[1]
j_lim = np.arange(j_start_index,j_end_index,dtype='i')
A_local_block = A_local_row[np.ix_(i_lim,j_lim)]
return A_local_block
A_local_block=refresh_A_block(rank,jProcs,A_block_size,A_local_row);
# Now the local blocks are initialised. We need to proceed to the stepping part of the algorithm
def advance_B_blocks(rank,jProcs,nProcs,B_block_size,current_block):
next_proc = (rank+jProcs) % nProcs
prev_proc = (rank-jProcs) % nProcs
send_rank_tag = 400 + next_proc
receive_rank_tag = 400 + rank
new_block = np.zeros((B_block_size[0],B_block_size[1]),dtype='d')
print("Sending B block to",next_proc,"by processor",rank,"with tag",send_rank_tag)
print("Receiving B block from",prev_proc,"by processor",rank,"with tag",receive_rank_tag)
print(np.size(current_block))
world.Send([current_block,MPI.DOUBLE],dest=next_proc,tag=send_rank_tag)
world.Recv([new_block,MPI.DOUBLE],source=prev_proc,tag=receive_rank_tag)
return new_block
print("Calculation started in Processor",rank)
for step_number in range(no_of_steps):
C_local_block = C_local_block + A_local_block.dot(B_local_block)
print("Step",step_number+1,"completed in processor",rank)
A_local_row=np.roll(A_local_row,-1*int(A_block_size[1]),axis=1)
A_local_block = refresh_A_block(rank,jProcs,A_block_size,A_local_row);
print("A refreshed in step",step_number+1,"by processor",rank)
B_local_block = advance_B_blocks(rank,jProcs,nProcs,B_block_size,B_local_block);
print("B refreshed in step",step_number+1,"by processor",rank)
# print(C_local_block)
if rank == 0:
print("Collecting the different blocks of C")
if (rank != 0):
rank_tag = 300 + rank
world.Send([C_local_block,MPI.DOUBLE],dest=0,tag=rank_tag)
else:
i_lim = np.arange(0,C_block_size[0])
j_lim = np.arange(0,C_block_size[1])
C[np.ix_(i_lim,j_lim)] = C_local_block
for proc in range(1,nProcs):
# I,J is the left starting point of the big matrix C
rank_tag = 300 + proc
current_block = np.zeros((C_block_size[0],C_block_size[1]),dtype='d');
world.Recv([current_block,MPI.DOUBLE],source=proc,tag=rank_tag)
I = (proc//jProcs)*C_block_size[0]
J = (proc%jProcs)*C_block_size[1]
i_lim = np.arange(I,I+C_block_size[0])
j_lim = np.arange(J,J+C_block_size[1])
C[np.ix_(i_lim,j_lim)] = current_block
print("c_calc",C)
if (rank == 0):
print("c_act",C_act)
print(np.amax(np.abs(C-C_act)))
print("Done",rank)