-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
146 lines (126 loc) · 4.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
##############
#Dependencies
##############
import re
import csv
import math
from sklearn.cluster import AgglomerativeClustering
import numpy as np
from config import outPutPath,stopWords,numOfFreqWord,minFreq,numOfClusters
from tools import CnkiData
#################
#Methods -Generate Matrix
#################
def addWordIntoDict(word,dict):
if word in dict:
dict[word] += 1
else:
dict[word] = 1
def countKeyWord():
article_list = CnkiData
allPeriod = dict()
for article in article_list:
for kw in set(article['kw']):
if kw in stopWords:
continue
else:
addWordIntoDict(kw,allPeriod)
allPeriod = sorted(allPeriod.items(),key = lambda item:item[1],reverse=True)
return allPeriod
def getMinFreqCount():
allWordList = countKeyWord()
count = 0
for i in allWordList:
if(i[1]<minFreq):
break
count += 1
return count
def generateWordList(end = numOfFreqWord):
allWordList = countKeyWord()
#关键词列表
word_list = [i[0] for i in allWordList[:end] ]
return word_list
def generateWordIndex(end = numOfFreqWord):
word_list = generateWordList(end)
wordIndex = dict()
count = 0
for word in word_list:
wordIndex[word] = count
count += 1
return wordIndex
def generateCoWordMatrix(length = numOfFreqWord):
article_list = CnkiData
word_list = generateWordList(length)
coWordMatrix = []
wordIndex = generateWordIndex(length)
#生成一个高频词对应下标的字典
for i in range(0,len(wordIndex)):
#初始化共词矩阵
coWordMatrix.append([])
for j in range (0,len(wordIndex)):
coWordMatrix[i].append(0)
for article in article_list:
for kw1 in set(article['kw']):
if kw1 not in word_list:
#不是高频词
continue
for kw2 in set(article['kw']):
if kw2 not in word_list:
continue
index1 = wordIndex[kw1]
index2 = wordIndex[kw2]
coWordMatrix[index1][index2] += 1
return coWordMatrix
def generateSimilarDifferentMatrix(coWordMatrix):
similarMatrix = []
differentMatrix = []
for i in range(0,len(coWordMatrix)):
#初始化相似矩阵
similarMatrix.append([])
for j in range (0,len(coWordMatrix)):
ochiia = coWordMatrix[i][j]/(math.sqrt(coWordMatrix[i][i])*math.sqrt(coWordMatrix[j][j]))
#计算ochiia系数
similarMatrix[i].append(round(ochiia+0.00000000000000001,4))
for i in range(0,len(coWordMatrix)):
#初始化相似矩阵
differentMatrix.append([])
for j in range (0,len(coWordMatrix)):
differentMatrix[i].append(1-similarMatrix[i][j])
return similarMatrix, differentMatrix
def saveAsCsv(matrix,filename = 'outputdata',rowName = []):
csvfile = open(outPutPath+filename+'.csv','w',encoding='utf-8')
writer = csv.writer(csvfile)
if(rowName):
writer.writerow(rowName)
writer.writerows(matrix)
csvfile.close()
#####################
#main process
#####################
def clustering():
cwm = generateCoWordMatrix(numOfFreqWord)
sm, dm= generateSimilarDifferentMatrix(cwm)
X = np.array(dm)
clustering = AgglomerativeClustering(n_clusters=numOfClusters).fit(X)
#分8类
return clustering.labels_
#############
#Execute Script
##############
if __name__ == '__main__':
if(minFreq):
numOfFreqWord = getMinFreqCount()
elif(not numOfFreqWord):
print('Configuration Error: numbers of frequent word')
exit()
allWordList = countKeyWord()
wordList = generateWordList()
labels = clustering()
clusterDict = dict()
for i in range(0,numOfClusters):
clusterDict[i] = []
for j in range(0,len(labels)):
if(labels[j] == i):
clusterDict[i].append(wordList[j])
for cluster in clusterDict:
print(cluster,clusterDict[cluster])