-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy path15.html
449 lines (355 loc) · 13.6 KB
/
15.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
<!DOCTYPE html>
<meta charset="utf-8">
<title>How to deal with Sines and Cosines | Calculus Made Easy</title>
<link rel="stylesheet" href="screen.css">
<style>
body{counter-reset:h1 15}
</style>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script>
<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<h1><br>How to deal with Sines and Cosines</h1>
<p class="a rotatedFloralHeartBullet">
<p>Greek letters being usual to denote angles, we will
take as the usual letter for any variable angle the
letter $\theta$ (“theta”).
<p>Let us consider the function
\[
y= \sin \theta.
\]
<a name="figure3">
<p><img src="33283-t/images/177a.pdf.png-1.png">
<p>What we have to investigate is the value of $\dfrac{d(\sin \theta)}{d \theta}$;
or, in other words, if the angle $\theta$ varies, we have to
find the relation between the increment of the sine
and the increment of the angle, both increments being
indefinitely small in themselves. Examine <a href="#figure43">Figure 43</a>,
wherein, if the radius of the circle is unity, the height
of $y$ is the sine, and $\theta$ is the angle. Now, if $\theta$ is
supposed to increase by the addition to it of the
small angle $d \theta$–an element of angle–the height
of $y$, the sine, will be increased by a small element $dy$.
The new height $y + dy$ will be the sine of the new
angle $\theta + d \theta$, or, stating it as an equation,
\[
y+dy = \sin(\theta + d \theta);
\]
and subtracting from this the first equation gives
\[
dy = \sin(\theta + d \theta)- \sin \theta.
\]
<p>The quantity on the right-hand side is the difference
between two sines, and books on trigonometry tell
us how to work this out. For they tell us that if
$M$ and $N$ are two different angles,
\[
\sin M - \sin N = 2 \cos\frac{M+N}{2}·\sin\frac{M-N}{2}.
\]
<p>If, then, we put $M= \theta + d \theta$ for one angle, and
$N= \theta$ for the other, we may write
\begin{align*}
dy &= 2 \cos\frac{\theta + d\theta + \theta}{2}
· \sin\frac{\theta + d\theta - \theta}{2},\\
\text{or,}\;
dy &= 2\cos(\theta + \tfrac{1}{2}d\theta)
· \sin\tfrac{1}{2} d\theta.
\end{align*}
<p>But if we regard $d \theta$ as indefinitely small, then in
the limit we may neglect $\frac{1}{2} d \theta$ by comparison with $\theta$,
and may also take $\sin\frac{1}{2} d \theta$ as being the same as $\frac{1}{2} d \theta$.
The equation then becomes:<a name="differsin"/>
\begin{align*}
dy &= 2 \cos \theta × \tfrac{1}{2} d \theta; \\
dy &= \cos \theta · d \theta, \\
\text{ and, finally,}\;
\dfrac{dy}{d \theta} &= \cos \theta.
\end{align*}
<p>The accompanying curves, <a href="#figure44">Fig. 44</a> and <a href="#figure45">Fig. 45</a> show,
plotted to scale, the values of $y=\sin \theta$, and $\dfrac{dy}{d\theta}=\cos\theta$,
for the corresponding values of $\theta$.
<a name="figure44">
<p><img src="33283-t/images/179a.pdf.png-1.png"><a name="erratum2"/>
<a name="figure45">
<p><img src="33283-t/images/179b.pdf.png-1.png">
<hr>
<p>Take next the cosine.<a name="differcos"/>
<p>Let $y=\cos \theta$.
<p>Now $\cos \theta=\sin\left(\dfrac{\pi}{2}-\theta\right)$.
<p>Therefore
\begin{align*}
&\begin{aligned}
dy = d\left(\sin\left(\frac{\pi}{2} - \theta\right)\right)
&= \cos\left(\frac{\pi}{2} - \theta\right) × d(-\theta), \\
&= \cos\left(\frac{\pi}{2} - \theta\right) × (-d\theta),
\end{aligned} \\
&\frac{dy}{d\theta} = -\cos\left(\frac{\pi}{2} - \theta\right).
\end{align*}
And it follows that
\begin{align*}
&\frac{dy}{d\theta} = -\sin \theta.
\end{align*}
<p><hr>
<p>Lastly, take the tangent.
Let
\begin{align*}
y &= \tan \theta, \\
dy &= \tan(\theta + d\theta) - \tan\theta. \\
\end{align*}
Expanding, as shown in books on trigonometry,
\begin{align*}
\tan(\theta + d\theta)
&= \frac{\tan\theta + \tan d\theta}
{1 - \tan\theta·\tan d\theta}; \\
\text{whence}\;
dy &= \frac{\tan\theta + \tan d\theta}
{1-\tan\theta·\tan d\theta} - \tan\theta \\
&= \frac{(1 + \tan^2\theta)\tan d\theta}
{1-\tan\theta·\tan d\theta}.
\end{align*}
<p>Now remember that if $d\theta$ is indefinitely diminished,
the value of $\tan d\theta$ becomes identical with $d\theta$, and
$\tan\theta · d\theta$ is negligibly small compared with $1$, so that
the expression reduces to
\begin{align*}
dy &= \frac{(1+\tan^2 \theta)\, d\theta}{1}, \\
\text{so that}\;
\frac{dy}{d\theta} &= 1 + \tan^2\theta, \\
\text{or}\;
\frac{dy}{d\theta} &= \sec^2 \theta.
\end{align*}
<p>Collecting these results, we have:
<table>
<tr><th>$y$</th><th>$\dfrac{dy}{d\theta}$</th></tr>
<tr><td>$\sin\theta$</td><td>$\cos\theta$</td></tr>
<tr><td>$\cos\theta$</td><td>$-\sin\theta$</td></tr>
<tr><td>$\tan\theta$</td><td>$\sec^2\theta$</td></tr>
</table>
<p>Sometimes, in mechanical and physical questions,
as, for example, in simple harmonic motion and in
wave-motions, we have to deal with angles that increase
in proportion to the time. Thus, if $T$ be the
time of one complete <em>period</em>, or movement round the
circle, then, since the angle all round the circle is $2\pi$ radians,
or $360°$, the amount of angle moved through
in time $t$, will be
\begin{align*}
\theta &= 2\pi\frac{t}{T},\quad \text{in radians,} \\
\text{or}\;
\theta &= 360\frac{t}{T},\quad \text{in degrees.}
\end{align*}
<p>If the <em>frequency</em>, or number of periods per second,
be denoted by $n$, then $n = \dfrac{1}{T}$, and we may then write:
\[
\theta=2\pi nt.
\]
Then we shall have
\[
y = \sin 2\pi nt.
\]
<p>If, now, we wish to know how the sine varies with
respect to time, we must differentiate with respect, not
to $\theta$, but to $t$. For this we must resort to the artifice
explained in <a href="9.html">Chapter IX</a>., and put
\[
\frac{dy}{dt} = \frac{dy}{d\theta} · \frac{d\theta}{dt}.
\]
<p>Now $\dfrac{d\theta}{dt}$ will obviously be $2\pi n$; so that
\begin{align*}
\frac{dy}{dt} &= \cos \theta × 2\pi n \\
&= 2\pi n · \cos 2\pi nt. \\
\end{align*}
Similarly, it follows that
\begin{align*}
\frac{d(\cos 2\pi nt)}{dt} &= -2\pi n · \sin 2\pi nt.
\end{align*}
<p>
<h2>Second Differential Coefficient of Sine or Cosine.</h2>
<p>We have seen that when $\sin \theta$ is differentiated with
respect to $\theta$ it becomes $\cos \theta$; and that when $\cos \theta$ is
differentiated with respect to $\theta$ it becomes $-\sin \theta$;
or, in symbols,
\[
\frac{d^2(\sin \theta)}{d\theta^2} = -\sin \theta.
\]
<p>So we have this curious result that we have found
a function such that if we differentiate it twice over,
we get the same thing from which we started, but
with the sign changed from $+$ to $-$.
<p>The same thing is true for the cosine; for differentiating
$\cos\theta$ gives us $-\sin\theta$, and differentiating
$-\sin\theta$ gives us $-\cos\theta$; or thus:
\[
\frac{d^2(\cos\theta)}{d\theta^2} = -\cos\theta.
\]
<p><em>Sines and cosines are the only functions of which
the second differential coefficient is equal (and of
opposite sign to) the original function.</em>
<p><hr>
<p><em>Examples</em><a name="intex3"/>
With what we have so far learned we can now
differentiate expressions of a more complex nature.
<p>(1) $y=\arcsin x$.
<p>If $y$ is the arc whose sine is $x$, then $x = \sin y$.
\[
\frac{dx}{dy}=\cos y.
\]
<p>Passing now from the inverse function to the original
one, we get
\begin{align*}
\frac{dy}{dx}
&= \frac{1}{\;\dfrac{dx}{dy}\;} = \frac{1}{\cos y}. \\
\text{Now}\;
\cos y
&= \sqrt{1-\sin^2 y}=\sqrt{1-x^2}; \\
\text{hence}\;
\frac{dy}{dx}
&= \frac{1}{\sqrt{1-x^2}},
\end{align*}
a rather unexpected result.
<p>(2) $y=\cos^3 \theta$.
<p>This is the same thing as $y=(\cos \theta)^3$.
<p>Let $\cos\theta=v$; then $y=v^3$; $\dfrac{dy}{dv}=3v^2$.
\begin{align*}
\frac{dv}{d\theta} &= -\sin\theta.\\
\frac{dy}{d\theta} &= \frac{dy}{dv} × \frac{dv}{d\theta}
= -3 \cos^2 \theta \sin\theta.
\end{align*}
<p>(3) $y=\sin(x+a)$.
<p>Let $x+a=v$; then $y=\sin v$.
\[
\frac{dy}{dv}=\cos v;\qquad
\frac{dv}{dx}=1 \quad\text{and}\quad
\frac{dy}{dx}=\cos(x+a).
\]
<p>(4) $y=\log_\epsilon \sin \theta$.
<p>Let $\sin\theta=v$; $y=\log_\epsilon v$.
\begin{align*}
\frac{dy}{dv} &= \frac{1}{v};\quad \frac{dv}{d\theta}=\cos\theta;\\
\frac{dy}{d\theta} &= \frac{1}{\sin\theta} × \cos\theta = \cot\theta.
\end{align*}
<p>(5) $y=\cot\theta=\dfrac{\cos\theta}{\sin\theta}$.
\begin{align*}
\frac{dy}{d\theta}
&= \frac{-\sin^2\theta - \cos^2 \theta}{\sin^2 \theta}\\
&= -(1+\cot^2 \theta) = -\text{cosec}^2 \theta.
\end{align*}
<p>(6) $y=\tan 3\theta$.
<p>Let $3\theta=v$; $y=\tan v$; $\dfrac{dy}{dv}=\sec^2 v$.
\[
\frac{dv}{d\theta}=3;\quad
\frac{dy}{d\theta}=3 \sec^2 3\theta.
\]
<p>(7) $y = \sqrt{1+3\tan^2\theta}$; $y=(1+3 \tan^2 \theta)^{\frac{1}{2}}$.
<p>Let $3\tan^2\theta=v$.
\begin{align*}
y &= (1+v)^{\frac{1}{2}};\quad
\frac{dy}{dv} = \frac{1}{2\sqrt{1+v}}
\end{align*}
(see <a href="9.html#ExNo1">here</a>);
\begin{align*}
\frac{dv}{d\theta}
&= 6\tan\theta \sec^2 \theta \\
\end{align*}
for, if $\tan \theta = u$,
\begin{align*}
v &= 3u^2;\quad \frac{dv}{du} = 6u;\quad \frac{du}{d\theta} = \sec^2 \theta; \\
hence
\frac{dv}{d\theta}
&= 6 (\tan \theta \sec^2 \theta) \\
hence
\frac{dy}{d\theta}
&= \frac{6\tan\theta \sec^2\theta}{2\sqrt{1 + 3\tan^2\theta}}.
\end{align*}
<p>(8) $y=\sin x \cos x$. <a name="example1"/>
\begin{align*}
\frac{dy}{dx}
&= \sin x(-\sin x) + \cos x × \cos x \\
&= \cos^2 x - \sin^2 x.
\end{align*}
<p>
<hr><h3>Exercises XIV</h3>
(1) Differentiate the following:
\begin{align*}
\text{(i)}\quad y &= A \sin\left(\theta - \frac{\pi}{2}\right).\\
\text{(ii)}\quad y &= \sin^2 \theta;\quad \text{and } y = \sin 2\theta.\\
\text{(iii)}\quad y &= \sin^3 \theta;\quad \text{and } y = \sin 3\theta.
\end{align*}
<p>(2) Find the value of $\theta$ for which $\sin\theta × \cos\theta$ is a
maximum.
<p>(3) Differentiate $y=\dfrac{1}{2\pi} \cos 2\pi nt$.
<p>(4) If $y = \sin a^x$, find $\dfrac{dy}{dx}$.
<p>(5) Differentiate $y=\log_\epsilon \cos x$.
<p>(6) Differentiate $y=18.2 \sin(x+26°)$.
<p>(7) Plot the curve $y=100 \sin(\theta-15°)$; and show
that the slope of the curve at $\theta = 75°$ is half the
maximum slope.
<p>(8) If $y=\sin \theta·\sin 2\theta$, find $\dfrac{dy}{d\theta}$.
<p>(9) If $y=a·\tan^m(\theta^n)$, find the differential coefficient
of $y$ with respect to $\theta$.
<p>(10) Differentiate $y=\epsilon^x \sin^2 x$.
<p>(11) Differentiate the three equations of Exercises XIII.
(<a href="14b.html">here</a>), No. 4, and compare their differential
coefficients, as to whether they are equal, or nearly
equal, for very small values of $x$, or for very large
values of $x$, or for values of $x$ in the neighbourhood
of $x=30$.
<p>(12) Differentiate the following:
\begin{align*}
\text{(i)}\quad y &= \sec x. \\
\text{(ii)}\quad y &= \arccos x. \\
\text{(iii)}\quad y &= \arctan x. \\
\text{(iv)}\quad y &= \text{arcsec} x. \\
\text{(v)}\quad y &= \tan x × \sqrt{3 \sec x}. &&
\end{align*}
<p>(13) Differentiate $y=\sin(2\theta +3)^{2.3}$.
<p>(14) Differentiate $y=\theta^3+3 \sin(\theta+3)-3^{\sin \theta} - 3^\theta$.
<p>(15) Find the maximum or minimum of $y=\theta \cos \theta$.
<p><h3 class="answers">Answers</h3>
<p>(1) (i) $\dfrac{dy}{d\theta} = A \cos \left( \theta - \dfrac{\pi}{2} \right)$;
<p>(ii) $\dfrac{dy}{d\theta} = 2\sin\theta \cos\theta = \sin2\theta$ and $\dfrac{dy}{d\theta} = 2\cos2\theta$;
<p>(iii) $\dfrac{dy}{d\theta} = 3\sin^2 \theta \cos\theta$ and $\dfrac{dy}{d\theta} = 3\cos3\theta$.
<p>(2) $\theta = 45°$ or $\dfrac{\pi}{4}$ radians.
<p>(3) $\dfrac{dy}{dt} = -n \sin 2\pi nt$.
<p>(4) $a^x \log_\epsilon a \cos a^x$.
<p>(5) $\dfrac{\cos x}{\sin x} = \text{cotan}\; x$
<p>(6) $18.2 \cos \left(x + 26° \right)$.
<p>(7) The slope is $\dfrac{dy}{d\theta} = 100\cos\left(\theta - 15° \right)$, which is a maximum
when $(\theta -15°) = 0$, or $\theta = 15°$; the value of the slope
being then ${}= 100$. When $\theta = 75°$ the slope is
$100\cos(75° - 15°) = 100\cos 60° = 100 × \frac{1}{2} = 50$.
<p>(8) $\begin{aligned}[t]
\cos\theta \sin2\theta + 2\cos2\theta \sin\theta
&= 2\sin\theta\left(\cos^2 \theta + \cos2\theta\right) \\
&= 2\sin\theta\left(3\cos^2 \theta - 1\right).
\end{aligned}$
<p>(9) $amn\theta^{n-1} \tan^{m-1}\left(\theta^n\right)\sec^2 \theta^n$.
<p>(10) $\epsilon^x \left(\sin^2 x + \sin2x\right)$; $\epsilon^x \left(\sin^2 x + 2\sin2x + 2\cos2x\right)$.
<p>(11) $\left(i\right) \dfrac{dy}{dx} = \dfrac{ab}{\left(x + b\right)^2}$;
(ii) $\dfrac{a}{b} \epsilon^{-\frac{x}{b}}$;
(iii) $\dfrac{1}{90}° × \dfrac{ab}{\left(b^2 + x^2\right)}$.
<p>(12) (i) $\dfrac{dy}{dx} = \sec x \tan x$;
(ii) $\dfrac{dy}{dx} = - \dfrac{1}{\sqrt{ 1 - x^2}}$;
(iii) $\dfrac{dy}{dx} = \dfrac{1}{ 1 + x^2}$;
(iv) $\dfrac{dy}{dx} = \dfrac{1}{x \sqrt{ x^2 - 1}}$;
(v) $\dfrac{dy}{dx} = \dfrac{\sqrt{ 3\sec x} \left(3\sec^2 x - 1\right)}{2}$.
<p>(13) $\dfrac{dy}{d\theta} = 4.6\left(2\theta + 3\right)^{1.3} \cos\left(2\theta + 3\right)^{2.3}$.
<p>(14) $\dfrac{dy}{d\theta} = 3\theta^2 + 3\cos \left( \theta + 3 \right) - \log_\epsilon 3 \left( \cos\theta × 3^{\sin\theta} + 3\theta \right)$.
<p>(15) $\theta = \cot\theta; \theta = ±0.86$; is max. for $+\theta$, min. for $-\theta$.
<br>
<hr>
<a href="16.html">Next →</a><br>
<a href="/">Main Page ↑</a><br>
<script src="j/jquery.js"></script>
<script src="j/modernizr.js"></script>
<script src="j/dih5.js"></script>
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-101178221-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-101178221-1');
</script>