-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
298 lines (250 loc) · 14.4 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# utility packages
import os
import time
import argparse
import numpy as np
from torch.nn.modules.module import T
import matplotlib.pyplot as plt
from torch.utils.data.sampler import WeightedRandomSampler
timestamp = time.time()
# machine learning packages
import wandb
import torch
import torch.nn as nn
import torch.optim as optim
import pytorch_lightning as pl
from torch.nn import functional as F
from torch.utils.data import DataLoader, dataloader
import torchvision.transforms as transforms
# dataloaders and segmentation models
from seg_models_v2 import UNetEncoder, UNetDecoder
from Dataset.init_data import acdc, md_prostate
from Dataset.dataset import DatasetRandom # note: for finetuning we always use DatasetRandom
from Dataset.experiments_paper import data_init_acdc, data_init_prostate_md
from loss import Loss, multiclass_dice_coeff
# define paths for the images and the segmentation labels
img_path = "/home/ssl_project/datasets/ACDC"
seg_path = "/home/ssl_project/datasets/ACDC"
parser = argparse.ArgumentParser(description="Random-Random Strategy Run 3")
# all the arguments for the dataset, model, and training hyperparameters
parser.add_argument('--exp_name', default='FT FINAL Final', type=str, help='Name of the experiment/run')
parser.add_argument('-st', '--strategy', default='GR', type=str, help='Strategy for pretraining; Options: GR, GD-, GD, GD-alt')
# dataset
parser.add_argument('-data', '--dataset', default='ACDC', help='Specifyg acdc or md_prostate without quotes')
parser.add_argument('--dataset_name', default='acdc', type=str, help='acdc or md_prostate dataset')
parser.add_argument('-nti', '--num_train_imgs', default='tr8', type=str, help='Number of training images, options tr1, tr2 or tr8')
parser.add_argument('-cti', '--comb_train_imgs', default='c1', type=str, help='Combintation of Train imgs., options c1, c2, c3, c4, c5')
parser.add_argument('--img_path', default=img_path, type=str, help='Absolute path of the training data')
parser.add_argument('--seg_path', default=seg_path, type=str, help='Same as path of training data')
# model
parser.add_argument('-in_ch', '--in_channels', default=1, type=int, help='Number of input channels')
parser.add_argument('-num_flt', '--init_num_filters', type=int, default=16, help='Initial no. of filters for Conv Layers')
parser.add_argument('-g1_dim', '--g1_out_dim', default=128, type=int, help='Output dimension for the projector head')
parser.add_argument('-nc', '--num_classes', default=4, type=int, help='Number of classes to segment')
parser.add_argument('-np', '--num_partitions', default=4, type=int, help='No. of partitions per volume')
# optimization
parser.add_argument('-p', '--precision', default=32, type=int, help='Precision for training')
parser.add_argument('-ep', '--epochs', default=2500, type=int, help='Number of epochs to train')
parser.add_argument('-bs', '--batch_size', default=12, type=int, help='Batch size')
parser.add_argument('-nw', '--num_workers', default=4, type=int, help='Number of worker processes')
parser.add_argument('-gpus', '--num_gpus', default=1, type=int, help="Number of GPUs to use")
parser.add_argument('-lr', '--learning_rate', default=5e-4, type=float, help="Learning rate to use")
parser.add_argument('-wd', '--weight_decay', default=1e-3, type=float, help='Default weight decay')
parser.add_argument('-pat', '--patience', default=10, type=int, help='number of validation steps (val_every_n_iters) to wait before early stoping')
parser.add_argument('--T_0', default=500, type=int, help='number of steps in each cosine cycle')
parser.add_argument('-epb', '--enable_progress_bar', default=False, type=bool, help='by default is disabled since it doesnt work in colab')
parser.add_argument('--val_every_n_iters', default='100', type=int, help='num of iterations before validation')
parser.add_argument('-ptr', '--pretrained', default=False, action='store_true', help='Load pretrained weights for the encoder')
cfg = parser.parse_args()
# load paths for different pre-trained encoders
strategy = cfg.strategy # options: "GR", "GD-", "GD", "GD-alt"
folder_name = "./" + strategy + "_saved_models/"
load_path = folder_name + "best_encoder_" + cfg.strategy + "_" + cfg.dataset + ".pt"
print(load_path)
class SegModel(pl.LightningModule):
def __init__(self, cfg):
super(SegModel, self).__init__()
self.cfg = cfg
if not cfg.pretrained:
print("INITIALIZING ENCODER WEIGHTS FROM SCRATCH!")
# self.net = UNet(n_channels=self.cfg.in_channels, init_filters=self.cfg.init_num_filters, n_classes=self.cfg.num_classes)
self.encoder = UNetEncoder(n_channels=self.cfg.in_channels, init_filters=self.cfg.init_num_filters)
self.decoder = UNetDecoder(init_filters=self.cfg.init_num_filters, n_classes=self.cfg.num_classes)
else:
print("LOADING PRETRAINED WEIGHTS FOR THE ENCODER!")
self.encoder = UNetEncoder(n_channels=self.cfg.in_channels, init_filters=self.cfg.init_num_filters)
self.encoder.load_state_dict(torch.load(load_path))
self.encoder.eval() # layers are frozen by using .eval() method
# for finetuning - all the paramters are updated after initialization with pretrained weights
# for params in self.encoder.parameters():
# params.requires_grad = False
self.decoder = UNetDecoder(init_filters=self.cfg.init_num_filters, n_classes=self.cfg.num_classes)
if cfg.dataset == 'ACDC':
data_init = data_init_acdc
dataset_cfg = acdc
elif cfg.dataset == 'MD_PROSTATE':
data_init = data_init_prostate_md
dataset_cfg = md_prostate
else:
print('The dataset is not found')
self.num_class = dataset_cfg['num_class']
self.train_ids = data_init.train_data(self.cfg.num_train_imgs, self.cfg.comb_train_imgs)
self.val_ids = data_init.val_data(self.cfg.num_train_imgs, self.cfg.comb_train_imgs)
self.test_ids = data_init.test_data()
self.train_dataset = DatasetRandom(dataset_cfg, self.train_ids, self.cfg.img_path, preprocessed_data=False, seg_path=self.cfg.seg_path, augmentation=True)
self.valid_dataset = DatasetRandom(dataset_cfg, self.val_ids, self.cfg.img_path, preprocessed_data=False, seg_path=self.cfg.seg_path, augmentation=True)
self.test_dataset = DatasetRandom(dataset_cfg, self.test_ids, self.cfg.img_path, preprocessed_data=False, seg_path=self.cfg.seg_path, augmentation=False)
self.loss = Loss(loss_type=0, device=self.device)
self.loss_visualization_step = 0.1
self.best_valid_loss = 1
self.best_train_loss = 1
self.train_losses, self.valid_losses, self.test_losses = [], [], []
self.init_timestamp = time.time()
self.num_iters_per_epoch = np.int(np.ceil(len(self.train_dataset) / self.cfg.batch_size))
def forward(self, x):
enc_out, context_feats = self.encoder(x)
logits, out_final = self.decoder(enc_out, context_feats)
return out_final
def compute_loss(self, batch, exclude_background=False):
imgs, gts = batch
imgs, gts = imgs.float(), gts.long()
enc_out, context_feats = self.encoder(imgs)
logits, preds = self.decoder(enc_out, context_feats)
gts_one_hot = self.loss.one_hot(gts, num_classes=self.num_class) # convert to one-hot for Dice loss
loss = self.loss.compute(proj_feat0=None, proj_feat1=None, proj_feat2=None, partition_size=None,
prediction=preds[:, int(exclude_background):],target=gts_one_hot[:, int(exclude_background):], multiclass=True)
return loss, preds, imgs, gts
def training_step(self, batch, batch_nb):
loss, preds, imgs, gts = self.compute_loss(batch)
self.train_losses += [loss.item()] * len(imgs)
if loss < self.best_train_loss - self.loss_visualization_step and batch_nb==0:
self.best_train_loss = loss.item()
fig = visualize(preds, imgs, gts)
wandb.log({"Training Output Visualizations": fig})
plt.close()
return loss
def validation_step(self, batch, batch_nb):
loss, preds, imgs, gts = self.compute_loss(batch)
self.valid_losses += [loss.item()] * len(imgs)
# qualitative results on wandb when first batch dice improves by 10%
if loss < self.best_valid_loss - self.loss_visualization_step and batch_nb==0:
self.best_valid_loss = loss.item()
fig = visualize(preds, imgs, gts)
wandb.log({"Validation Output Visualizations": fig})
plt.close()
def test_step(self, batch, batch_nb):
loss, preds, imgs, gts = self.compute_loss(batch, exclude_background=True)
self.test_losses += [loss.item()] * len(imgs)
# qualitative results on wandb
fig = visualize(preds, imgs, gts)
wandb.log({"Test Output Visualizations": fig})
plt.close()
# # dice score (found online)
# test_gt_one_hot = self.loss.one_hot(gts.long(), num_classes=self.cfg.num_classes)
# # computing the dice score, ignoring the background ie class 0
# # but the paper does it with including the background, hence also adding class 0
# test_dice_score = multiclass_dice_coeff((preds[:, 0:, ...]).to(self.device), (test_gt_one_hot[:, 0:, ...]).to(self.device), reduce_batch_first=True)
# # as a sanity check, dice score increases when background is also included (i.e. :, 0:, :, :)
# outputs = dict({'test_dice_score' : test_dice_score})
# return outputs
def on_train_epoch_end(self):
train_loss = np.mean(self.train_losses)
self.log('train_loss', train_loss)
self.train_losses = []
def on_validation_epoch_end(self):
valid_loss = np.mean(self.valid_losses)
self.log('valid_loss', valid_loss)
self.valid_losses = []
def on_test_epoch_end(self):
test_loss = np.mean(self.test_losses)
self.log('test_loss', test_loss)
self.test_losses = []
self.final_timestamp = time.time()
self.log('train+test_time', self.final_timestamp - self.init_timestamp)
# def test_epoch_end(self, outputs):
# temp = torch.stack([x['test_dice_score'] for x in outputs])
# # print(temp)
# mean_dice = temp.mean()
# print(f"MEAN DICE SCORE: {mean_dice}")
def configure_optimizers(self):
optimizer = optim.AdamW(params=self.parameters(), lr=self.cfg.learning_rate, weight_decay=self.cfg.weight_decay)
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=self.cfg.T_0//self.num_iters_per_epoch, eta_min=1e-6)
return [optimizer], [scheduler]
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size = self.cfg.batch_size,
shuffle = True, drop_last=True, num_workers=self.cfg.num_workers)
def val_dataloader(self):
return DataLoader(self.valid_dataset, batch_size = self.cfg.batch_size,
shuffle = False, drop_last=False, num_workers=self.cfg.num_workers)
def test_dataloader(self):
return DataLoader(self.test_dataset, batch_size = self.cfg.batch_size,
shuffle = False, drop_last=False, num_workers=self.cfg.num_workers)
def visualize(preds, imgs, gts, num_imgs=10):
main_colors = torch.tensor([
[0, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 1, 0],
[0, 1, 1],
[1, 0, 1],
[1, 1, 1]
]).view(8, 3).float()
# getting ready for post processing
imgs, gts, preds = imgs.detach().cpu(), gts.detach().cpu(), preds.detach().cpu()
imgs = imgs.squeeze(dim=1).numpy()
gts = gts.squeeze(dim=1)
num_classes = preds.shape[1]
colors = main_colors[:num_classes]
# coloring the predictions
preds[preds < torch.max(preds, dim=1, keepdims=True)[0]] = 0
preds_colored = torch.tensordot(preds, colors, dims=[[1], [0]]).numpy()
# coloring the ground truth masks
gts_onehot = F.one_hot(gts, num_classes=num_classes).permute(0, 3, 1, 2)
gts_colored = torch.tensordot(gts_onehot.float(), colors, dims=[[1], [0]]).numpy()
fig, axs = plt.subplots(3, num_imgs, figsize=(9, 3))
fig.suptitle('Original --> Ground Truth --> Prediction')
for i in range(num_imgs):
img_num = np.random.randint(0, len(imgs))
axs[0, i].imshow(imgs[img_num], cmap='gray'); axs[0, i].axis('off')
axs[1, i].imshow(gts_colored[img_num]); axs[1, i].axis('off')
axs[2, i].imshow(preds_colored[img_num]); axs[2, i].axis('off')
fig.show()
return fig
def main(cfg):
# experiment tracker (you need to sign in with your account)
timestamp = time.time()
wandb_logger = pl.loggers.WandbLogger(
name='%s-%s-%s-%s <- %d'%(cfg.strategy, cfg.dataset_name, cfg.num_train_imgs, cfg.comb_train_imgs, timestamp),
group= '%s %s'%(cfg.exp_name, cfg.strategy),
log_model=True, # save best model using checkpoint callback
project='supervised-finetune',
entity='ssl-medical-imaging',
config=cfg)
# to save the best model on validation, log learning_rate and early stop
checkpoint = pl.callbacks.ModelCheckpoint(
filename="best_model_"+str(int(timestamp)),
monitor="valid_loss",
save_top_k=1,
save_last=False,
mode="min")
lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval='epoch')
early_stop = pl.callbacks.EarlyStopping(monitor="valid_loss", min_delta=0.00,
patience=cfg.patience, verbose=False, mode="min")
model = SegModel(cfg)
trainer = pl.Trainer(
devices=cfg.num_gpus, accelerator="gpu", strategy="ddp",
logger=wandb_logger,
callbacks=[checkpoint, lr_monitor, early_stop],
max_epochs=cfg.epochs,
precision=cfg.precision,
enable_progress_bar=cfg.enable_progress_bar,
check_val_every_n_epoch=(cfg.val_every_n_iters//model.num_iters_per_epoch))
# log gradients, parameter histogram and model topology
wandb_logger.watch(model, log='all')
trainer.fit(model)
print("------- Training Done! -------")
print("------- Testing Begins! -------")
trainer.test(model)
if __name__ == '__main__':
main(cfg)