-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_cls.py
535 lines (469 loc) · 21 KB
/
main_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# @Author: Xuan Cao <xuan>
# @Date: 2019-12-22, 12:18:33
# @Last modified by: xuan
# @Last modified time: 2019-12-22, 1:33:17
import os, argparse
import json
import shutil
import warnings
warnings.filterwarnings("ignore")
import time
from pathlib import Path
from typing import Dict
import numpy as np
import pandas as pd
import torch
import tqdm
from sklearn.exceptions import UndefinedMetricWarning
import matplotlib.pyplot as plt
import seaborn as sns
from torch import nn
from torch.optim import Adam
from torch.optim.lr_scheduler import ReduceLROnPlateau, CyclicLR, StepLR, CosineAnnealingLR
from warmup_scheduler import GradualWarmupScheduler
from torch.utils.data import DataLoader, WeightedRandomSampler
import torch.nn.functional as F
import segmentation_models_pytorch as smp
#from losses import FocalLoss, SoftDiceLoss
from dataSet.dataset import *
from dataSet.transforms import *
from dataSet.all_transforms import *
from models.cls_model import *
from util.utils import *
from util.lrs_schedulers import *
from common import *
from losses import *
from apex import amp
warnings.filterwarnings("ignore")
warnings.filterwarnings("ignore",category=UserWarning)
def parse_arg():
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg('--mode', default='train')
arg('--run_root', default='../output/')
arg('--model', default='resnet34')
arg('--clean', action='store_true')
arg('--pretrained', type=int, default=0)
arg('--batch-size', type=int, default=8)
arg('--step', type=int, default=4)
arg('--gamma', type=float, default=0.5)
arg('--gamma-step', type=int, default=3)
arg('--patience', type=int, default=3)
arg('--lr', type=float, default=3e-4)
arg('--lrc', type=str, default='reduceLR')
arg('--workers', type=int, default=2 if ON_KAGGLE else 8)
arg('--n-epochs', type=int, default=50)
arg('--tta', type=int, default=1)
arg('--limit', type=int)
arg('--fold', type=int, default=0)
arg('--multi-gpu', type=int, default=0)
arg('--pl', type=int, default=0)
arg('--loss_weights', type=str, default='0,1,1')
arg('--sliding', type=int, default=0)
arg('--sampling', type=int, default=0)
arg('--framework', type=str, default='Unet')
arg('--channel_wise', type=int, default=0)
arg('--annealing_epoch', type=int, default=5)
arg('--pixel', type=str, default='0.5,0.5,0.5,0.5')
arg('--area', type=str, default='0,0,0,0')
args = parser.parse_args()
args.loss_weights = [float(x) for x in args.loss_weights.split(',')]
args.pixel = [float(x) for x in args.pixel.split(',')]
args.area = [float(x) for x in args.area.split(',')]
return args
def main():
args = parse_arg()
set_seed(1217)
print(args.model)
print('%s fold-%d...' % (args.mode, args.fold))
args.run_root = args.run_root + '/' + args.model#'0822_efficientnetb0_LB804'
run_root = Path(args.run_root)
if run_root.exists() and args.clean:
shutil.rmtree(run_root)
run_root.mkdir(exist_ok=True, parents=True)
train_root = DATA_ROOT / ('images_%d' % SIZE[0])
valid_root = train_root
test_root = train_root
sample_sub = pd.read_csv(DATA_ROOT / 'sample_submission.csv')
ss = pd.DataFrame()
ss['Image_Label'] = sample_sub['Image_Label'].apply(lambda x: x.split('_')[0]).unique()
ss['EncodedPixels'] = '1 1'
fold_df = pd.read_csv('./files/5-folds_%d.csv' % (SIZE[0]))
train_fold = fold_df[fold_df['fold']!=args.fold].reset_index(drop=True)
valid_fold = fold_df[fold_df['fold']==args.fold].reset_index(drop=True)
PIXEL_THRESHOLDS = args.pixel
AREA_SIZES = args.area
if args.pl == 1: # add puesdo label
df_pl = pd.read_csv('./files/df_pl.csv')
for col in train_fold.columns:
if col not in df_pl.columns:
df_pl[col] = 0
train_fold = train_fold.append(df_pl)
train_fold.fillna('', inplace=True)
if args.limit:
train_fold = train_fold[:args.limit]
valid_fold = valid_fold[:args.limit]
if args.sliding:
train_transform = transform_train_al((256, 256))
else:
train_transform = transform_train_al(SIZE)
test_transform = transform_test_al(SIZE)
model_name = args.model if '-' not in args.model else args.model.split('-')[0]
if model_name.startswith('effi'):
model_name = model_name[:-2] + '-' + model_name[-2:]
model = efficientnet(model_name, num_classes=NUM_CLASSES)
elif model_name.startswith('resnet'):
model = resnet(model_name, num_classes=NUM_CLASSES)
if args.mode == 'train':
(run_root / 'params.json').write_text(
json.dumps(vars(args), indent=4, sort_keys=True))
training_set = Dataset_cloud(train_root,
df=train_fold, transform=train_transform,
mode='train')
#sampler = EmptySampler(data_source=training_set, positive_ratio_range=sampler_ratio, epochs=args.n_epochs)
validation_set = Dataset_cloud(train_root,
df=valid_fold, transform=test_transform,
mode='train')
print(f'{len(training_set):,} items in train, ', f'{len(validation_set):,} in valid')
train_loader = DataLoader(training_set,
batch_size=args.batch_size,
num_workers=args.workers,
sampler=None,
drop_last=False,
shuffle=True,)
valid_loader = DataLoader(validation_set, shuffle=False,
batch_size=args.batch_size,
#collate_fn=null_collate,
num_workers=args.workers)
model = model.cuda()
#optimizer = Adam([{'params': model.encoder.parameters(), 'lr': args.lr},
# {'params': model.decoder.parameters(), 'lr': args.lr*10}])
optimizer = Adam(filter(lambda p: p.requires_grad, model.parameters()),
lr=args.lr, weight_decay=0, betas=(0.9, 0.999), eps=1e-08)
if args.lrc == 'reduceLR':
scheduler = ReduceLROnPlateau(optimizer, patience=args.patience,
factor=args.gamma, verbose=True, mode='max')
elif args.lrc == 'cos':
scheduler = CosineAnnealingLR(optimizer, args.patience, eta_min=args.lr*args.gamma)
elif args.lrc == 'warmRestart':
scheduler = WarmRestart(optimizer, T_max=args.patience, T_mult=1, eta_min=1e-6)
# scheduler = StepLR(optimizer, step_size=args.patience, gamma=args.gamma)
model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0)
#
train_kwargs = dict(
args=args,
model=model,
optimizer=optimizer,
scheduler=scheduler,
train_loader=train_loader,
valid_loader=valid_loader,
# use_cuda=use_cuda,
epoch_length=len(training_set),
)
train(n_epochs=args.n_epochs, **train_kwargs)
file = '%s/train-%d.log'%(args.run_root, args.fold)
df = pd.read_csv(file, sep='|')
cols = df.columns
df.columns = [x.strip() for x in cols]
fig, ax = plt.subplots(2, 2, figsize=(12,12))
#loss profile
ax[0, 0].plot(df.epoch, df.loss, label='train-loss', marker='o')
ax[0, 0].plot(df.epoch, df['val loss'], label='val-loss', marker='x')
ax[0, 0].set_xlabel('epoch')
ax[0, 0].set_ylabel('loss')
ax[0, 0].legend()
#lr profile
ax[0, 1].plot(df.epoch, df.lr, label='lr', marker='o')
ax[0, 1].set_xlabel('epoch')
ax[0, 1].set_ylabel('lr')
ax[0, 1].legend()
if 'AUC-mean' in df.columns: #cls
ax[1, 0].plot(df.epoch, df['AUC-mean'], '-ro', label='AUC-mean')
ax[1, 0].set_xlabel('epoch')
ax[1, 0].set_ylabel('AUC-mean')
ax[1, 0].legend()
for k in range(4):
ax[1, 1].plot(df.epoch, df['class%d'%(k+1)], '-o', label=CLASS_NAMES[k])
ax[1, 1].set_xlabel('epoch')
ax[1, 1].set_ylabel('AUC')
ax[1, 1].legend()
else:
ax[1, 0].plot(df.epoch, df['val dice'], '-ro', label='dice')
ax[1, 0].set_xlabel('epoch')
ax[1, 0].set_ylabel('val-dice')
ax[1, 0].legend()
fig.savefig(Path(args.run_root)/('train_%d.png'%(args.fold)))
elif args.mode.startswith('predict'):
if (run_root /('best-dice-%d.pt' % args.fold)).exists():
load_model(model, run_root /('best-dice-%d.pt' % args.fold), multi2single=False)
else:
load_model(model, run_root /('best-model-%d.pt' % args.fold), multi2single=False)
model = model.cuda()
if args.mode == 'predict_valid':
valid_set = Dataset_cloud(valid_root,
df=valid_fold, transform=test_transform,
mode='test')
valid_loader = DataLoader(valid_set, shuffle=False,
batch_size=args.batch_size,
num_workers=args.workers)
predict(model, args.mode, loader=valid_loader, out_path=run_root, fold=args.fold, tta=args.tta)
elif args.mode == 'predict_test':
if args.limit:
ss = ss[:args.limit]
test_set = Dataset_cloud(test_root,
df=ss, transform=test_transform,
mode='test')
test_loader = DataLoader(test_set, shuffle=False,
batch_size=args.batch_size,
num_workers=args.workers)
predict(model, args.mode, loader=test_loader, out_path=run_root, fold=args.fold, tta=args.tta)
elif args.mode == 'predict_5fold':
if args.limit:
ss = ss[:args.limit]
test_set = Dataset_cloud(test_root,
df=ss, transform=test_transform,
mode='test')
test_loader = DataLoader(test_set, shuffle=False,
batch_size=args.batch_size,
num_workers=args.workers)
predict_5fold(test_loader, out_path=run_root, args=args,
pixel_thresholds=PIXEL_THRESHOLDS,
area_size=AREA_SIZES)
else:
RuntimeError('%s mode not implemented' % (args.mode))
elif args.mode == 'opt':
# creat save folder
if (run_root /('opt')).exists():
pass
else:
output_root = Path(run_root /('opt'))
output_root.mkdir(exist_ok=True, parents=True)
# Load model
if (run_root /('best-dice-%d.pt' % args.fold)).exists():
load_model(model, run_root /('best-dice-%d.pt' % args.fold), multi2single=False)
else:
load_model(model, run_root /('best-model-%d.pt' % args.fold), multi2single=False)
model = model.cuda()
valid_set = Dataset_cloud(valid_root,
df=valid_fold, transform=test_transform,
mode='test')
valid_loader = DataLoader(valid_set, shuffle=False,
batch_size=args.batch_size,
num_workers=args.workers)
area_ts_list = [0,0,0,0]
for pixel_ts in range(0, 80, 5):
pixel_ts /= 100
pixel_ts_list = [pixel_ts] * 4
print('Processing: pixel-[%s]'%(str(pixel_ts)))
predict(model, args.mode, loader=valid_loader,
out_path=run_root /('opt'),
fold=args.fold, tta=args.tta,
pixel_thresholds=pixel_ts_list,
area_size=area_ts_list,
)
else:
print('%s mode not implemented' % (args.mode))
def train(args, model: nn.Module, optimizer, scheduler, *,
train_loader, valid_loader, epoch_length, # use_cuda,
n_epochs=None, strategy=None) -> bool:
n_epochs = n_epochs or args.n_epochs
run_root = Path(args.run_root)
model_path = run_root / ('model-%d.pt' % args.fold)
best_model_path = run_root / ('best-model-%d.pt' % args.fold)
best_cls_path = run_root / ('best-dice-%d.pt' % args.fold)
if best_cls_path.exists():
state, best_valid_loss = load_model(model, best_cls_path)
val_auc = state['best_valid_auc']
best_valid_loss = state['best_valid_loss']
start_epoch = state['epoch']
step = state['step']
best_epoch = state['epoch']
else:
best_valid_auc = 0
best_valid_loss = 999999
start_epoch = 0
step = 0
best_epoch = 0
save = lambda ep: torch.save({
'model': model.state_dict(),
'epoch': epoch,
'step': step,
'best_valid_auc': val_auc,
'best_valid_loss': val_loss,
}, str(model_path))
report_each = 1000000
if (run_root / ('train_%d.log' % (args.fold))).exists():
log = run_root.joinpath('train-%d.log' % args.fold).open('at', encoding='utf8')
else:
log = run_root.joinpath('train-%d.log' % args.fold).open('at', encoding='utf8')
log.write('epoch| lr | loss |val loss|AUC-mean|class1|class2|class3|class4|neg_F1|time|save\n')
n_circle = 0
if isinstance(scheduler, WarmRestart):
n_annealing = args.annealing_epoch
else:
n_annealing = 0
for epoch in range(start_epoch, start_epoch + n_epochs + n_annealing):
start_time = time.time()
model.train()
lr = get_learning_rate(optimizer)
tq = tqdm.tqdm(total=epoch_length, ascii=True)
tq.set_description(f'Epoch {epoch}, lr {lr}')
losses = []
mean_loss = 0
if args.sampling:
train_loader.sampler.set_epoch(epoch)
for i, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.cuda(), targets.cuda()
batch_size,channel,_,_ = targets.shape
targets_fc = (targets.view(batch_size, channel, -1).sum(-1)>0).float()
#optimizer.zero_grad()
#with torch.set_grad_enabled(True):
logits = model(inputs)
logits_fc = logits.view(batch_size, channel, -1)
logits_fc = torch.max(logits_fc, -1)[0]
loss = WeightedBCE(weights=args.loss_weights[-2:])(logits_fc, targets_fc)
#loss.backward()
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
if (i+1) % args.step == 0:
optimizer.step()
optimizer.zero_grad()
step += 1
tq.update(batch_size*args.step)
losses.append(loss.item())
#running_loss += loss.item() * inputs.size(0)
mean_loss = np.mean(losses[-report_each:])
#tq.set_postfix(loss=(running_loss / ((i+1) * batch_size)))
tq.set_postfix(loss=f'{mean_loss:.5f}')
if i and i % report_each == 0:
write_event(log, step, loss=mean_loss)
############## On Epoch End ####################
# valid -> save -> save best
#write_event(log, step, epoch=epoch, loss=mean_loss)
tq.close()
valid_metrics = validation(model, valid_loader, args, save_result=True)
#write_event(log, step, epoch, **valid_metrics)
val_loss = valid_metrics['val_loss']
aucs = valid_metrics['aucs']
val_f1 = valid_metrics['F1']
val_auc = np.mean(valid_metrics['aucs'])
_save_ckp = ' '
save(epoch + 1)
if epoch < start_epoch + n_epochs - 1:
if scheduler is not None:
if isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(val_loss)
elif isinstance(scheduler, StepLR):
scheduler.step()
elif isinstance(scheduler, GradualWarmupScheduler):
scheduler.step()
elif isinstance(scheduler, CosineAnnealingLR):
scheduler.step()
elif isinstance(scheduler, WarmRestart):
if epoch != 0:
scheduler.step()
scheduler=warm_restart(scheduler, T_mult=2)
else:
raise RuntimeError('Opeartion for scheduler not implemented.')
elif epoch < start_epoch + n_epochs + 2 and epoch >= start_epoch + n_epochs - 1:
optimizer.param_groups[0]['lr'] = 1e-5
else:
optimizer.param_groups[0]['lr'] = 5e-6
if val_auc > best_valid_auc:
best_valid_auc = val_auc
shutil.copy(str(model_path), str(best_cls_path))
_save_ckp += '#'
if val_loss < best_valid_loss:
best_valid_loss = val_loss
#best_valid_dice = val_dice
shutil.copy(str(model_path), str(best_model_path))
best_epoch = epoch
_save_ckp += '*'
run_time = (time.time() - start_time)/60
#epoch| lr | loss |val loss|class1|class2|class3|class4|neg_F1|time|save
log.write('%5d|%1.6f|%.5f| %.5f| %.5f|%.4f|%.4f|%.4f|%.4f|%.4f|%.2f|%s' \
% (epoch, lr, mean_loss, val_loss, val_auc, aucs[0], aucs[1], aucs[2],
aucs[3], valid_metrics['F1'], run_time, _save_ckp))
run_time = (time.time() - start_time)/60
log.write('\n')
log.flush()
print('Best epoch: %d, Loss: %.5f, AUC: %.5f'\
% (best_epoch, best_valid_loss, best_valid_auc))
return True
def validation(model: nn.Module, valid_loader, args, save_result=False) -> Dict[str, float]:
run_root = Path(args.run_root)
model.eval()
all_losses = 0
cls_targets, cls_pred = [], []
n_samples = 0
with torch.no_grad():
for i, (inputs, targets) in tqdm.tqdm(enumerate(valid_loader)):
batch_size, channel, _, _ = targets.size()
inputs, targets = inputs.cuda(), targets.cuda()
targets_fc = (targets.view(batch_size, channel, -1).sum(-1) > 0).float()
cls_targets.append(targets_fc.cpu().numpy())
if args.sliding:
logits, logits_fc = predict_sliding(model, inputs)
else:
logits_fc = model(inputs)
#print(logits_fc.shape)
cls_pred.append((F.sigmoid(logits_fc)).cpu().numpy())
loss = WeightedBCE(weights=args.loss_weights[-2:])(logits_fc, targets_fc)
all_losses += loss.item()*batch_size
n_samples += batch_size
cls_targets = np.concatenate(cls_targets)
cls_pred = np.concatenate(cls_pred)
metrics = {}
metrics['val_loss'] = float(all_losses/n_samples)
metrics['hit'], metrics['aucs'], [neg_precision, neg_recall] = metric_hit(cls_pred, cls_targets)
metrics['F1'] = 2/(1/neg_precision + 1/neg_recall)
to_print = []
for idx, (k, v) in enumerate(metrics.items()):
if k == 'dice_detail':
v_p = ['%.3f' % (x) for x in v]
v_p = ','.join(v_p)
to_print.append(f'{k} [{v_p}]')
elif k == 'aucs':
to_print.append('Mean auc %.5f' % (np.mean(metrics['aucs'])))
v_p = ['%.3f' % (x) for x in v]
v_p = ','.join(v_p)
to_print.append(f'{k} [{v_p}]')
elif k == 'hit':
pass
else:
to_print.append(f'{k} {v:.3f}')
#to_print.append(str(np.sum(pred)))
print(' | '.join(to_print))
return metrics
def predict(model, mode, loader, out_path: Path, fold, tta):
mode = mode.split('_')[-1]
model.eval()
all_outputs, all_ids, all_cls = [], [], []
with torch.no_grad():
for inputs, names in tqdm.tqdm(loader, desc='Predict'):
inputs = inputs.cuda()
outputs = model(inputs)
cls_pred = F.sigmoid(outputs).view(-1).data.cpu().numpy()
if tta >= 2:# h flip
outputs = model(inputs.flip(3))
cls_pred += F.sigmoid(outputs).view(-1).data.cpu().numpy()
if tta == 3:# v flip
outputs = model(inputs.flip(2))
cls_pred += F.sigmoid(outputs).view(-1).data.cpu().numpy()
if tta != 0:
cls_pred /= tta
all_cls.append(cls_pred)
ids = [item for sublist in list(zip(*names)) for item in sublist]
all_ids.extend(ids)
df = pd.DataFrame(data=np.concatenate(all_cls), index=all_ids)
df = mean_df(df).reset_index()
df.rename(columns={'index': 'Image_Label'}, inplace=True)
df['EncodedPixels'] = np.nan
df['EncodedPixels'].loc[df[0] > 0.5] = '1 1'
if tta <= 1:
df.to_csv(out_path / ('%s_cls_fold%d.csv' % (mode, fold)), index=None)
else:
df.to_csv(out_path / ('%s_cls_fold%d_tta%d.csv' % (mode, fold, tta)), index=None)
print(f'Saved predictions to {out_path}')
if __name__ == '__main__':
main()