-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_autoreg_chi.py
391 lines (317 loc) · 16.5 KB
/
train_autoreg_chi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import sys
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
import common.run_manager
import seq_des.models as models
import seq_des.util.voxelize as voxelize
import glob
import seq_des.util.canonicalize as canonicalize
import pickle
import seq_des.util.data as datasets
from torch.utils import data
import common.atoms
import seq_des.util.acc_util as acc_util
import subprocess as sp
import time
import torch.nn.functional as F
""" script to train 3D CNN on local residue-centered environments -- with autoregressive rotamer chi angle prediction"""
dist = 10
n = 20
c = len(common.atoms.atoms)
def test(model, gen, dataloader, criterion, chi_1_criterion, chi_2_criterion, chi_3_criterion, chi_4_criterion, max_it=1e6, desc="test", batch_size=64, n_iters=500, k=3, return_cm=False, use_cuda=True):
n_iters = min(max_it, n_iters)
model = model.eval()
gen = iter(dataloader)
losses, avg_acc, avg_top_k_acc, avg_coarse_acc, avg_polar_acc, avg_chi_1_acc, avg_chi_2_acc, avg_chi_3_acc, avg_chi_4_acc, avg_chi_1_loss, avg_chi_2_loss, avg_chi_3_loss, avg_chi_4_loss = ([] for i in range(13))
with torch.no_grad():
for i in tqdm(range(n_iters), desc=desc):
try:
out = gen.next()
except StopIteration:
gen = iter(dataloader)
out = gen.next()
out = step(model, out, criterion, chi_1_criterion, chi_2_criterion, chi_3_criterion, chi_4_criterion, use_cuda=use_cuda)
if out is None:
continue
loss, chi_1_loss, chi_2_loss, chi_3_loss, chi_4_loss, out, y, acc, top_k_acc, coarse_acc, polar_acc, chi_1_acc, chi_2_acc, chi_3_acc, chi_4_acc = out
# append losses, accs to lists
for x, y in zip(
[losses, avg_acc, avg_top_k_acc, avg_coarse_acc, avg_polar_acc, avg_chi_1_acc, avg_chi_2_acc, avg_chi_3_acc, avg_chi_4_acc, avg_chi_1_loss, avg_chi_2_loss, avg_chi_3_loss, avg_chi_4_loss],
[loss.item(), acc, top_k_acc, coarse_acc, polar_acc, chi_1_acc, chi_2_acc, chi_3_acc, chi_4_acc, chi_1_loss.item(), chi_2_loss.item(), chi_3_loss.item(), chi_4_loss.item()],
):
x.append(y)
del loss, chi_1_loss, chi_2_loss, chi_3_loss, chi_4_loss, out, y, acc, top_k_acc, coarse_acc, polar_acc, chi_1_acc, chi_2_acc, chi_3_acc, chi_4_acc
print("\nloss", np.mean(losses), "acc", np.mean(avg_acc), "top3", np.mean(avg_top_k_acc), "coarse", np.mean(avg_coarse_acc), "polar", np.mean(avg_polar_acc))
return (
gen,
np.mean(losses),
np.mean(avg_chi_1_loss),
np.mean(avg_chi_2_loss),
np.mean(avg_chi_3_loss),
np.mean(avg_chi_4_loss),
np.mean(avg_acc),
np.mean(avg_top_k_acc),
np.mean(avg_coarse_acc),
np.mean(avg_polar_acc),
np.mean(avg_chi_1_acc),
np.mean(avg_chi_2_acc),
np.mean(avg_chi_3_acc),
np.mean(avg_chi_4_acc),
)
def step(model, out, criterion, chi_1_criterion, chi_2_criterion, chi_3_criterion, chi_4_criterion, k=3, use_cuda=True):
bs_idx, x_atom, x_bb, x_b, y_b, z_b, x_res_type, y, chi_angles_real, chi_angles = out
bs = len(bs_idx)
output_atom = torch.zeros((bs, c + 1, n + 2, n + 2, n + 2))
output_bb = torch.zeros((bs, 2, n + 2, n + 2, n + 2))
output_res = torch.zeros((bs, 22, n + 2, n + 2, n + 2))
if use_cuda:
output_atom, output_bb, output_res = map(lambda x: x.cuda(), [output_atom, output_bb, output_res])
output_atom[bs_idx, x_atom, x_b, y_b, z_b] = 1 # atom type
output_bb.zero_()
output_bb[bs_idx, x_bb, x_b, y_b, z_b] = 1 # BB indicator
output_res.zero_()
output_res[bs_idx, x_res_type, x_b, y_b, z_b] = 1 # res type
output = torch.cat([output_atom[:, :c], output_bb[:, :1], output_res[:, :21]], 1)
X = output[:, :, 1:-1, 1:-1, 1:-1]
X, y = X.float(), y.long()
chi_angles = chi_angles.long()
chi_1 = chi_angles[:, 0]
chi_2 = chi_angles[:, 1]
chi_3 = chi_angles[:, 2]
chi_4 = chi_angles[:, 3]
y_onehot = torch.FloatTensor(y.size()[0], 20)
y_onehot.zero_()
y_onehot.scatter_(1, y[:, None], 1)
chi_1_onehot = torch.FloatTensor(chi_1.size()[0], len(datasets.CHI_BINS))
chi_1_onehot.zero_()
chi_1_onehot.scatter_(1, chi_1[:, None], 1)
chi_2_onehot = torch.FloatTensor(chi_2.size()[0], len(datasets.CHI_BINS))
chi_2_onehot.zero_()
chi_2_onehot.scatter_(1, chi_2[:, None], 1)
chi_3_onehot = torch.FloatTensor(chi_3.size()[0], len(datasets.CHI_BINS))
chi_3_onehot.zero_()
chi_3_onehot.scatter_(1, chi_3[:, None], 1)
if use_cuda:
X, y, y_onehot, chi_1_onehot, chi_2_onehot, chi_3_onehot, chi_1, chi_2, chi_3, chi_4 = map(lambda x: x.cuda(), [X, y, y_onehot, chi_1_onehot, chi_2_onehot, chi_3_onehot, chi_1, chi_2, chi_3, chi_4])
out, chi_1_pred, chi_2_pred, chi_3_pred, chi_4_pred = model(X, y_onehot, chi_1_onehot[:, 1:], chi_2_onehot[:, 1:], chi_3_onehot[:, 1:])
# loss
loss = criterion(out, y)
chi_1_loss = chi_1_criterion(chi_1_pred, chi_1 - 1) # [:, 1:])
chi_2_loss = chi_2_criterion(chi_2_pred, chi_2 - 1) # [:, 1:])
chi_3_loss = chi_3_criterion(chi_3_pred, chi_3 - 1) # [:, 1:])
chi_4_loss = chi_4_criterion(chi_4_pred, chi_4 - 1) # [:, 1:])
# acc
acc, _ = acc_util.get_acc(out, y)
top_k_acc = acc_util.get_top_k_acc(out, y, k=k)
coarse_acc, _ = acc_util.get_acc(out, y, label_dict=acc_util.label_coarse)
polar_acc, _ = acc_util.get_acc(out, y, label_dict=acc_util.label_polar)
chi_1_acc, _ = acc_util.get_acc(chi_1_pred, chi_1 - 1, ignore_idx=-1)
chi_2_acc, _ = acc_util.get_acc(chi_2_pred, chi_2 - 1, ignore_idx=-1)
chi_3_acc, _ = acc_util.get_acc(chi_3_pred, chi_3 - 1, ignore_idx=-1)
chi_4_acc, _ = acc_util.get_acc(chi_4_pred, chi_4 - 1, ignore_idx=-1)
return loss, chi_1_loss, chi_2_loss, chi_3_loss, chi_4_loss, out, y, acc, top_k_acc, coarse_acc, polar_acc, chi_1_acc, chi_2_acc, chi_3_acc, chi_4_acc
def step_iter(gen, dataloader):
try:
out = gen.next()
except StopIteration:
gen = iter(dataloader)
out = gen.next()
return gen, out
def main():
manager = common.run_manager.RunManager()
manager.parse_args()
args = manager.args
log = manager.log
use_cuda = torch.cuda.is_available() and args.cuda
# set up model
model = models.seqPred(nic=len(common.atoms.atoms) + 1 + 21, nf=args.nf, momentum=0.01)
model.apply(models.init_ortho_weights)
if use_cuda:
model.cuda()
else:
print("Training model on CPU")
if args.model != "":
# load pretrained model
model.load_state_dict(torch.load(args.model))
print("loaded pretrained model")
# parallelize over available GPUs
if torch.cuda.device_count() > 1 and args.cuda:
print("using", torch.cuda.device_count(), "GPUs")
model = nn.DataParallel(model)
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(args.beta1, 0.999), weight_decay=args.reg)
if args.optimizer != "":
# load pretrained optimizer
optimizer.load_state_dict(torch.load(args.optimizer))
print("loaded pretrained optimizer")
# load pretrained model weights / optimizer state
chi_1_criterion = nn.CrossEntropyLoss(ignore_index=-1)
chi_2_criterion = nn.CrossEntropyLoss(ignore_index=-1)
chi_3_criterion = nn.CrossEntropyLoss(ignore_index=-1)
chi_4_criterion = nn.CrossEntropyLoss(ignore_index=-1)
criterion = nn.CrossEntropyLoss()
if use_cuda:
criterion.cuda()
chi_1_criterion.cuda()
chi_2_criterion.cuda()
chi_3_criterion.cuda()
chi_4_criterion.cuda()
train_dataset = datasets.PDB_data_spitter(data_dir=args.data_dir + "/train_s95_chi")
train_dataset.len = 8145448 # NOTE -- need to update this if underlying data changes
test_dataset = datasets.PDB_data_spitter(data_dir=args.data_dir + "/test_s95_chi")
test_dataset.len = 574267 # NOTE -- need to update this if underlying data changes
train_dataloader = data.DataLoader(train_dataset, batch_size=args.batchSize, shuffle=False, num_workers=args.workers, pin_memory=True, collate_fn=datasets.collate_wrapper)
test_dataloader = data.DataLoader(test_dataset, batch_size=args.batchSize, shuffle=False, num_workers=args.workers, pin_memory=True, collate_fn=datasets.collate_wrapper)
# training params
validation_frequency = args.validation_frequency
save_frequency = args.save_frequency
""" TRAIN """
model.train()
gen = iter(train_dataloader)
test_gen = iter(test_dataloader)
bs = args.batchSize
output_atom = torch.zeros((bs, c + 1, n + 2, n + 2, n + 2))
output_bb = torch.zeros((bs, 2, n + 2, n + 2, n + 2))
output_res = torch.zeros((bs, 22, n + 2, n + 2, n + 2))
y_onehot = torch.FloatTensor(bs, 20)
chi_1_onehot = torch.FloatTensor(bs, len(datasets.CHI_BINS))
chi_2_onehot = torch.FloatTensor(bs, len(datasets.CHI_BINS))
chi_3_onehot = torch.FloatTensor(bs, len(datasets.CHI_BINS))
if use_cuda:
output_atom, output_bb, output_res, y_onehot, chi_1_onehot, chi_2_onehot, chi_3_onehot = map(lambda x: x.cuda(), [output_atom, output_bb, output_res, y_onehot, chi_1_onehot, chi_2_onehot, chi_3_onehot])
for epoch in range(args.epochs):
for it in tqdm(range(len(train_dataloader)), desc="training epoch %0.2d" % epoch):
gen, out = step_iter(gen, train_dataloader)
bs_idx, x_atom, x_bb, x_b, y_b, z_b, x_res_type, y, chi_angles_real, chi_angles = out
bs_i = len(bs_idx)
output_atom.zero_()
output_atom[bs_idx, x_atom, x_b, y_b, z_b] = 1 # atom type
output_bb.zero_()
output_bb[bs_idx, x_bb, x_b, y_b, z_b] = 1 # BB indicator
output_res.zero_()
output_res[bs_idx, x_res_type, x_b, y_b, z_b] = 1 # res type
output = torch.cat([output_atom[:, :c], output_bb[:, :1], output_res[:, :21]], 1)
X = output[:, :, 1:-1, 1:-1, 1:-1]
X, y = X.float(), y.long()
chi_angles = chi_angles.long()
chi_1 = chi_angles[:, 0]
chi_2 = chi_angles[:, 1]
chi_3 = chi_angles[:, 2]
chi_4 = chi_angles[:, 3]
if use_cuda:
y, y_onehot, chi_1, chi_2, chi_3, chi_4 = map(lambda x: x.cuda(), [y, y_onehot, chi_1, chi_2, chi_3, chi_4])
if bs_i < bs:
y = F.pad(y, (0, bs - bs_i))
chi_1 = F.pad(chi_1, (0, bs - bs_i))
chi_2 = F.pad(chi_2, (0, bs - bs_i))
chi_3 = F.pad(chi_3, (0, bs - bs_i))
y_onehot.zero_()
y_onehot.scatter_(1, y[:, None], 1)
chi_1_onehot.zero_()
chi_1_onehot.scatter_(1, chi_1[:, None], 1)
chi_2_onehot.zero_()
chi_2_onehot.scatter_(1, chi_2[:, None], 1)
chi_3_onehot.zero_()
chi_3_onehot.scatter_(1, chi_3[:, None], 1)
# 0 index for chi indicates that chi is masked
out, chi_1_pred, chi_2_pred, chi_3_pred, chi_4_pred = model(X[:bs_i], y_onehot[:bs_i], chi_1_onehot[:bs_i, 1:], chi_2_onehot[:bs_i, 1:], chi_3_onehot[:bs_i, 1:])
res_loss = criterion(out, y[:bs_i])
chi_1_loss = chi_1_criterion(chi_1_pred, chi_1[:bs_i] - 1) # , 1:])
chi_2_loss = chi_2_criterion(chi_2_pred, chi_2[:bs_i] - 1) # , 1:])
chi_3_loss = chi_3_criterion(chi_3_pred, chi_3[:bs_i] - 1) # , 1:])
chi_4_loss = chi_4_criterion(chi_4_pred, chi_4[:bs_i] - 1) # , 1:])
train_loss = res_loss + chi_1_loss + chi_2_loss + chi_3_loss + chi_4_loss
train_loss.backward()
optimizer.step()
# acc
train_acc, _ = acc_util.get_acc(out, y[:bs_i], cm=None)
train_top_k_acc = acc_util.get_top_k_acc(out, y[:bs_i], k=3)
train_coarse_acc, _ = acc_util.get_acc(out, y[:bs_i], label_dict=acc_util.label_coarse)
train_polar_acc, _ = acc_util.get_acc(out, y[:bs_i], label_dict=acc_util.label_polar)
chi_1_acc, _ = acc_util.get_acc(chi_1_pred, chi_1[:bs_i] - 1, ignore_idx=-1)
chi_2_acc, _ = acc_util.get_acc(chi_2_pred, chi_2[:bs_i] - 1, ignore_idx=-1)
chi_3_acc, _ = acc_util.get_acc(chi_3_pred, chi_3[:bs_i] - 1, ignore_idx=-1)
chi_4_acc, _ = acc_util.get_acc(chi_4_pred, chi_4[:bs_i] - 1, ignore_idx=-1)
# tensorboard logging
map(
lambda x: log.log_scalar("seq_chi_pred/%s" % x[0], x[1]),
zip(
["res_loss", "chi_1_loss", "chi_2_loss", "chi_3_loss", "chi_4_loss", "train_acc", "chi_1_acc", "chi_2_acc", "chi_3_acc", "chi_4_acc", "train_top3_acc", "train_coarse_acc", "train_polar_acc"],
[res_loss.item(), chi_1_loss.item(), chi_2_loss.item(), chi_3_loss.item(), chi_4_loss.item(), train_acc, chi_1_acc, chi_2_acc, chi_3_acc, chi_4_acc, train_top_k_acc, train_coarse_acc, train_polar_acc],
),
)
if it % validation_frequency == 0 or it == len(train_dataloader) - 1:
if it > 0:
if torch.cuda.device_count() > 1 and args.cuda:
torch.save(model.module.state_dict(), log.log_path + "/seq_chi_pred_curr_weights.pt")
else:
torch.save(model.state_dict(), log.log_path + "/seq_chi_pred_curr_weights.pt")
torch.save(optimizer.state_dict(), log.log_path + "/seq_chi_pred_curr_optimizer.pt")
# NOTE -- saving models for each validation step
if it > 0 and (it % save_frequency == 0 or it == len(train_dataloader) - 1):
if torch.cuda.device_count() > 1 and args.cuda:
torch.save(model.module.state_dict(), log.log_path + "/seq_chi_pred_epoch_%0.3d_%s_weights.pt" % (epoch, it))
else:
torch.save(model.state_dict(), log.log_path + "/seq_chi_pred_epoch_%0.3d_%s_weights.pt" % (epoch, it))
torch.save(optimizer.state_dict(), log.log_path + "/seq_chi_pred_epoch_%0.3d_%s_optimizer.pt" % (epoch, it))
##NOTE -- turning back on model.eval()
model.eval()
# eval on the test set
test_gen, curr_test_loss, test_chi_1_loss, test_chi_2_loss, test_chi_3_loss, test_chi_4_loss, curr_test_acc, curr_test_top_k_acc, coarse_acc, polar_acc, chi_1_acc, chi_2_acc, chi_3_acc, chi_4_acc = test(
model,
test_gen,
test_dataloader,
criterion,
chi_1_criterion,
chi_2_criterion,
chi_3_criterion,
chi_4_criterion,
max_it=len(test_dataloader),
n_iters=min(10, len(test_dataloader)),
desc="test",
batch_size=args.batchSize,
use_cuda=use_cuda,
)
map(
lambda x: log.log_scalar("seq_chi_pred/%s" % x[0], x[1]),
zip(
[
"test_loss",
"test_chi_1_loss",
"test_chi_2_loss",
"test_chi_3_loss",
"test_chi_4_loss",
"test_acc",
"test_chi_1_acc",
"test_chi_2_acc",
"test_chi_3_acc",
"test_chi_4_acc",
"test_acc_top3",
"test_coarse_acc",
"test_polar_acc",
],
[
curr_test_loss.item(),
chi_1_loss.item(),
chi_2_loss.item(),
chi_3_loss.item(),
chi_4_loss.item(),
curr_test_acc.item(),
chi_1_acc.item(),
chi_2_acc.item(),
chi_3_acc.item(),
chi_4_acc.item(),
curr_test_top_k_acc.item(),
coarse_acc.item(),
polar_acc.item(),
],
),
)
model.train()
log.advance_iteration()
if __name__ == "__main__":
main()