-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathskill.py
38 lines (28 loc) · 1.1 KB
/
skill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from lib import trueskill
import math
DEFAULT_MU = 1000.
DEFAULT_SIGMA = DEFAULT_MU / 3
DEFAULT_BETA = DEFAULT_SIGMA / 2
DEFAULT_TAU = DEFAULT_SIGMA * .01
DEFAULT_DRAW = 0
_ENV = trueskill.TrueSkill(
mu=DEFAULT_MU,
sigma=DEFAULT_SIGMA,
beta=DEFAULT_BETA,
tau=DEFAULT_TAU,
draw_probability=DEFAULT_DRAW)
def calculate_rating(mu, sigma):
rating = trueskill.Rating(mu=mu, sigma=sigma)
return int(_ENV.expose(rating))
def calculate_quality(red, blue):
red_ratings = tuple(trueskill.Rating(p.mu, p.sigma) for p in red)
blue_ratings = tuple(trueskill.Rating(p.mu, p.sigma) for p in blue)
return int(_ENV.quality([red_ratings, blue_ratings]) * 100)
def get_rating(player):
rating = trueskill.Rating(mu=player.mu, sigma=player.sigma)
return int(_ENV.expose(rating))
def update_ratings(winners, losers):
winner_ratings = tuple(trueskill.Rating(p.mu, p.sigma) for p in winners)
loser_ratings = tuple(trueskill.Rating(p.mu, p.sigma) for p in losers)
new_ratings = _ENV.rate([winner_ratings, loser_ratings], ranks=[0, 1])
return new_ratings[0], new_ratings[1]