-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_cst.py
389 lines (307 loc) · 17.9 KB
/
generate_cst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#! /usr/bin/env python
InfoString = '''
This script is to generate ATOMPAIR constraints for Rosetta,
by default for all downstreams and oxygens
within 3 angstroms
on non-neighbor residues
within an input pose.
'''
# uncomment just next line and copy block in multiline string for ipython mode
# '''
from multiprocessing import Process
from scipy import spatial
from Bio import PDB
import numpy as np
import subprocess
import argparse
import sys
import os
import re
if '-h' not in sys.argv:
import solenoid_tools
import rosetta
rosetta.init(extra_options = "-mute basic -mute core -mute protocols")
# '''
# sys.argv.extend(['-pdbs', '1EZG.pdb', '-out', './' ])
ThreeToOne = {'GLY':'G','ALA':'A','VAL':'V','LEU':'L','ILE':'I','MET':'M','PRO':'P','PHE':'F','TRP':'W','SER':'S','THR':'T','ASN':'N','GLN':'Q','TYR':'Y','CYS':'C','CYD':'C','LYS':'K','ARG':'R','HIS':'H','ASP':'D','GLU':'E','STO':'*','UNK':'U'}
ChainAlphabetIndices = {'A':1, 'B':2, 'C':3, 'D':4, 'E':5, 'F':6, 'G':7, 'H':8, 'I':9, 'J':10, 'K':11, 'L':12, 'M':13, 'N':14, 'O':15, 'P':16, 'Q':17, 'R':18, 'S':19, 'T':20, 'U':21, 'V':22, 'W':23, 'X':24, 'Y':25, 'Z':26 }
BackboneAtomList = ['C', 'CA', 'N', 'O']
def pymol_commands(Pdb, Repeat, ReportedRepeatCount):
return 'fetch %s\tselect rep%d, resi %s'%( Pdb, ReportedRepeatCount, '+'.join([str(Res) for Res in Repeat]) )
def get_pose_constraints(Pose, MaxDist, MinPositionSeperation, UpstreamGrep, DownstreamGrep, Weight, NeedHydrogen=True):
# for making full atom kd tree
ResAtmCoordLists = []
# for translating from kd tree index to ( residue, atom ) coord
ResAtmRecordLists = []
# loop through all residue numbers
for Res in range(1, Pose.n_residue() + 1):
# remade for each residue
AtmRecordList = []
AtmCoordList = []
# loop through residue's atom numbers
for Atm in range(1, Pose.residue(Res).natoms() + 1):
# add (residue, atom) coord to residue's list
AtmRecordList.append((Res, Atm))
# add atom xyz coord to residue's list
AtmCoordList.append( np.array(list(Pose.residue(Res).atom(Atm).xyz())) )
# add residue's lists to respective global lists
ResAtmCoordLists.extend(AtmCoordList)
ResAtmRecordLists.extend(AtmRecordList)
ResidueAtomArray = np.array( ResAtmCoordLists )
ResidueAtomKDTree = spatial.KDTree( ResidueAtomArray )
ResidueAtomNeighbors = ResidueAtomKDTree.query_ball_point( ResidueAtomArray, MaxDist )
# ResidueAtomNearNeighbors = ResidueAtomKDTree.query_ball_point( ResidueAtomArray, 2.0 )
ResidueAtomHydrogens = ResidueAtomKDTree.query_ball_point( ResidueAtomArray, 1.1 )
# holds constraints before printing
AllConstraints = []
# holds sorted cst
AllBackboneBackboneCst = []
AllBackboneSidechainCst = []
AllSidechainSidechainCst = []
# All contacts are from upstream to downstream residues to avoid double counting
Upstream = []
for UpIndex, UpXyzCoords in enumerate(ResAtmCoordLists):
UpRes, UpAtm = ResAtmRecordLists[UpIndex]
# # loop through residues storing info on oxygens
# for UpRes in range( 1, Pose.n_residue() + 1 ):
# # loop through atoms
# for UpAtm in range( 1, Pose.residue(UpRes).natoms() + 1 ):
UpName = Pose.residue(UpRes).atom_name(UpAtm).replace(' ', '')
# skip virtual residues
if Pose.residue(UpRes).is_virtual(UpAtm):
continue
# this guy
# /
# checks upstream name V
if re.match(UpstreamGrep, UpName ):
# print '\n'*2
# print 'UpRes, UpName', UpRes, UpName
# get neighbors of upstream residues
NeighborsOfUpstream = ResidueAtomNeighbors[UpIndex]
# prep for loop
Downstreams = []
Constraints = []
BackboneBackboneCst = []
BackboneSidechainCst = []
SidechainSidechainCst = []
# ArbitrayOrderOfAtomNames = {}
for DownIndex in NeighborsOfUpstream:
# name presumes downstream, checks with if imediately below
DownRes, DownAtm = ResAtmRecordLists[DownIndex]
# checks that downstream residue is dowstream of upstream and passes min primary sequence spacing
if DownRes - UpRes >= MinPositionSeperation:
DownName = Pose.residue(DownRes).atom_name(DownAtm).replace(' ', '')
# skip if same atom
if UpRes == DownRes:
if UpName == DownName:
continue
# skip virtual residues
if Pose.residue(DownRes).is_virtual(DownAtm):
continue
# checks downstream name
if re.match( DownstreamGrep, DownName ):
# print 'DownRes, DownName', DownRes, DownName
PotentialUpstreamHydrogens = ResidueAtomHydrogens[UpIndex]
UpstreamHydrogens = []
# print 'PotentialUpstreamHydrogens', PotentialUpstreamHydrogens
for UpH_I in PotentialUpstreamHydrogens:
UpH_Res, UpH_Atm = ResAtmRecordLists[UpH_I]
UpH_Name = Pose.residue(UpH_Res).atom_name(UpH_Atm).replace(' ', '')
# print 'UpH_Name', UpH_Name
if 'H' in UpH_Name:
UpstreamHydrogens.append((UpH_Res, UpH_Atm, UpH_Name))
# print 'UpstreamHydrogens', UpstreamHydrogens
PotentialDownstreamHydrogens = ResidueAtomHydrogens[DownIndex]
DownstreamHydrogens = []
# print 'PotentialDownstreamHydrogens', PotentialDownstreamHydrogens
for DownH_I in PotentialDownstreamHydrogens:
DownH_Res, DownH_Atm = ResAtmRecordLists[DownH_I]
DownH_Name = Pose.residue(DownH_Res).atom_name(DownH_Atm).replace(' ', '')
# print 'DownH_Name', DownH_Name
if 'H' in DownH_Name:
DownstreamHydrogens.append((DownH_Res, DownH_Atm, DownH_Name))
# print 'DownstreamHydrogens', DownstreamHydrogens
# check their is at least one hydrogen in system before adding constraint
if len(UpstreamHydrogens) or len(DownstreamHydrogens) or NeedHydrogen == False:
# if/elif/else seperates cst into groups for
# (BBBB) just backbone-backbone interactions from
# (BBSC) just backbone-sidechain interactions from
# (SCSC) just sidechain-sidechain interactinos
#
if UpName in BackboneAtomList and DownName in BackboneAtomList:
BBBB = 1
BBSC = 0
SCSC = 0
elif not UpName in BackboneAtomList and not DownName in BackboneAtomList:
BBBB = 0
BBSC = 0
SCSC = 1
else:
BBBB = 0
BBSC = 1
SCSC = 0
# print 'UpName', UpName
# print 'DownName', DownName
# print
# print 'found downstream neighbor %s'%DownName
DownXyzCoords = np.array( list(Pose.residue(DownRes).atom(DownAtm).xyz()) )
# print 'DownRes, DownName', DownRes, DownName
# print 'DownXyzCoords', DownXyzCoords
# ## Get neighbors for angles and torsions to use with AtomPairs
SelectUpNeighbors = []
# iterates through upstream atom neighbors for references for angle
for UpNeighborIndex in NeighborsOfUpstream:
UpNeighborRes, UpNeighborAtm = ResAtmRecordLists[UpNeighborIndex]
UpNeighborName = Pose.residue(UpNeighborRes).atom_name(UpNeighborAtm).replace(' ', '')
# keep looking if neighbor is hyrdogen
if 'H' in UpNeighborName:
continue
# skip virtual residues
if Pose.residue(UpNeighborRes).is_virtual(UpNeighborAtm):
continue
# keep looking if neighbor is self
if UpNeighborName == UpName and UpNeighborRes == UpRes:
continue
# keep looking if neighbor is downstream residue again
if UpNeighborName == DownName and UpNeighborRes == DownRes:
continue
UpNeighborCoords = ResAtmCoordLists[UpNeighborIndex]
DistanceToNeighbor = solenoid_tools.vector_magnitude( UpXyzCoords - UpNeighborCoords )
SelectUpNeighbors.append( (DistanceToNeighbor, UpNeighborName, UpNeighborRes, UpNeighborCoords) )
# sort by distance to atom, nearest first
SelectUpNeighbors.sort()
UpNeighbor1Tuple = SelectUpNeighbors[0]
UpNeighbor2Tuple = SelectUpNeighbors[1]
# print '\n'*2
# print 'UpRes, UpName', UpRes, UpName
# print 'UpstreamHydrogens', UpstreamHydrogens
# print 'SelectUpNeighbors', SelectUpNeighbors
# get neighbors of upstream residues
NeighborsOfDownstream = ResidueAtomNeighbors[DownIndex]
SelectDownNeighbors = []
# iterates through upstream atom neighbors for references for angle
for DownNeighborIndex in NeighborsOfDownstream:
DownNeighborRes, DownNeighborAtm = ResAtmRecordLists[DownNeighborIndex]
DownNeighborName = Pose.residue(DownNeighborRes).atom_name(DownNeighborAtm).replace(' ', '')
# keep looking if neighbor is hyrdogen
if 'H' in DownNeighborName:
continue
# skip virtual residues
if Pose.residue(DownNeighborRes).is_virtual(DownNeighborAtm):
continue
# keep looking if neighbor is self
if DownNeighborName == DownName and DownNeighborRes == DownRes:
continue
# keep looking if neighbor is upstream residue
if DownNeighborName == UpName and DownNeighborRes == UpRes:
continue
DownNeighborCoords = ResAtmCoordLists[DownNeighborIndex]
DistanceToNeighbor = solenoid_tools.vector_magnitude( DownXyzCoords - DownNeighborCoords )
SelectDownNeighbors.append( (DistanceToNeighbor, DownNeighborName, DownNeighborRes, DownNeighborCoords) )
# sort by distance to atom, nearest first
SelectDownNeighbors.sort()
DownNeighbor1Tuple = SelectDownNeighbors[0]
DownNeighbor2Tuple = SelectDownNeighbors[1]
# print 'DownRes, DownName', DownRes, DownName
# print 'DownstreamHydrogens', DownstreamHydrogens
# print 'SelectDownNeighbors', SelectDownNeighbors
Distance = solenoid_tools.vector_magnitude(DownXyzCoords - UpXyzCoords)
DistanceCst = 'AtomPair %s %d %s %d SCALARWEIGHTEDFUNC %f HARMONIC %.2f 1.0' %( UpName, UpRes, DownName, DownRes, Weight, Distance )
# Use Biopython for angle and dihedral calculations
# here 'Vec' means PDB.Vector of atom's xyz coord
UpstreamVec = PDB.Vector(UpXyzCoords)
DownstreamVec = PDB.Vector(DownXyzCoords)
UpNeighbor1Vec = PDB.Vector(UpNeighbor1Tuple[3])
UpNeighbor2Vec = PDB.Vector(UpNeighbor2Tuple[3])
DownNeighbor1Vec = PDB.Vector(DownNeighbor1Tuple[3])
DownNeighbor2Vec = PDB.Vector(DownNeighbor2Tuple[3])
Angle1 = PDB.calc_angle(UpNeighbor1Vec, UpstreamVec, DownstreamVec)
AngleCst1 = 'Angle %s %d %s %d %s %d SCALARWEIGHTEDFUNC %f CIRCULARHARMONIC %.2f 0.5' %( UpNeighbor1Tuple[1], UpNeighbor1Tuple[2], UpName, UpRes, DownName, DownRes, Weight, Angle1 )
Angle2 = PDB.calc_angle(UpstreamVec, DownstreamVec, DownNeighbor1Vec)
AngleCst2 = 'Angle %s %d %s %d %s %d SCALARWEIGHTEDFUNC %f CIRCULARHARMONIC %.2f 0.5' %( UpName, UpRes, DownName, DownRes, DownNeighbor1Tuple[1], DownNeighbor1Tuple[2], Weight, Angle2 )
Torsion1 = PDB.calc_dihedral(UpNeighbor2Vec, UpNeighbor1Vec, UpstreamVec, DownstreamVec)
TorsionCst1 = 'Dihedral %s %d %s %d %s %d %s %d SCALARWEIGHTEDFUNC %f CIRCULARHARMONIC %.2f 0.5' %( UpNeighbor2Tuple[1], UpNeighbor2Tuple[2], UpNeighbor1Tuple[1], UpNeighbor1Tuple[2], UpName, UpRes, DownName, DownRes, Weight, Torsion1 )
Torsion2 = PDB.calc_dihedral(UpNeighbor1Vec, UpstreamVec, DownstreamVec, DownNeighbor1Vec)
TorsionCst2 = 'Dihedral %s %d %s %d %s %d %s %d SCALARWEIGHTEDFUNC %f CIRCULARHARMONIC %.2f 0.5' %( UpNeighbor1Tuple[1], UpNeighbor1Tuple[2], UpName, UpRes, DownName, DownRes, DownNeighbor1Tuple[1], DownNeighbor1Tuple[2], Weight, Torsion2 )
Torsion3 = PDB.calc_dihedral(UpstreamVec, DownstreamVec, DownNeighbor1Vec, DownNeighbor2Vec)
TorsionCst3 = 'Dihedral %s %d %s %d %s %d %s %d SCALARWEIGHTEDFUNC %f CIRCULARHARMONIC %.2f 0.5' %( UpName, UpRes, DownName, DownRes, DownNeighbor1Tuple[1], DownNeighbor1Tuple[2], DownNeighbor2Tuple[1], DownNeighbor2Tuple[2], Weight, Torsion3 )
# adds constraint to running lists of constraints
Constraints.extend( [DistanceCst, AngleCst1, AngleCst2, TorsionCst1, TorsionCst2, TorsionCst3] )
if BBBB: BackboneBackboneCst.extend( [DistanceCst, AngleCst1, AngleCst2, TorsionCst1, TorsionCst2, TorsionCst3] )
if BBSC: BackboneSidechainCst.extend( [DistanceCst, AngleCst1, AngleCst2, TorsionCst1, TorsionCst2, TorsionCst3] )
if SCSC: SidechainSidechainCst.extend( [DistanceCst, AngleCst1, AngleCst2, TorsionCst1, TorsionCst2, TorsionCst3] )
# else:
# print 'No hydrogen!'
# sys.exit()
AllConstraints.extend(Constraints)
AllBackboneBackboneCst.extend(BackboneBackboneCst)
AllBackboneSidechainCst.extend(BackboneSidechainCst)
AllSidechainSidechainCst.extend(SidechainSidechainCst)
SortedConstraints = (AllBackboneBackboneCst, AllBackboneSidechainCst, AllSidechainSidechainCst)
return AllConstraints, SortedConstraints
# sys.argv = [sys.argv[0]]+['-pdbs', '1rwr_Relax.pdb']
def main(argv=None):
if argv != None:
sys.argv =[ sys.argv[0] ]+[ arg for arg in argv ]
ArgParser = argparse.ArgumentParser(description=' generate_cst.py arguments ( -help ) %s'%InfoString)
# Required arguments:
ArgParser.add_argument('-pdbs', type=str, nargs='+', help=' input pdbs ', required=True)
# Optional arguments:
ArgParser.add_argument('-out', type=str, help=' output directory ', default='./')
ArgParser.add_argument('-max_dist', type=float, default=3.4, help=' distance between the oxygens and downstreams ')
ArgParser.add_argument('-min_seq_sep', type=int, default=3, help=' minimum seperation in primary sequece ')
ArgParser.add_argument('-upstream_atom', type=str, default='[ON]\w?\d?', help=' grep for upstream atoms ')
ArgParser.add_argument('-downstream_atom', type=str, default='[ON]\w?\d?', help=' grep for downstream atoms ')
ArgParser.add_argument('-num_repeats', type=int, default=5, help=' number of repeats to extrapolate contacts for ')
ArgParser.add_argument('-weight', type=float, default=1.0, help=' weighting for constraints ')
ArgParser.add_argument('-renumber_pose', type=bool, default=True, help='True|False renumber pdb residues ' )
ArgParser.add_argument('-disulfide', type=bool, default=True, help='True|False also include disulfide constraints ' )
Args = ArgParser.parse_args()
# if len(Args.pdbs[0]) == 1:
# Args.pdbs = [''.join(Args.pdbs)]
if Args.out [-1] != '/':
Args.out = Args.out + '/'
import rosetta
rosetta.init(extra_options = "-mute basic -mute core -mute protocols")
ReportedRepeatCount = 0
TotalPdbs = len(Args.pdbs)
for iPdb, Pdb in enumerate(Args.pdbs):
print ' Working with %s; %d of %d total pdbs '%(Pdb, iPdb+1, TotalPdbs)
# Starting rosetta
Pose = rosetta.pose_from_pdb(Pdb)
OutputPdb = Args.out+Pdb
# Sets pdb info so residues in dumped pdbs are same as index
Pose.pdb_info(rosetta.core.pose.PDBInfo( Pose ))
if Args.renumber_pose:
rosetta.dump_pdb(Pose, OutputPdb)
else:
rosetta.dump_pdb(Pose, OutputPdb.replace('.pdb', '_renumbered.pdb'))
AllConstraints, SortedConstraints = get_pose_constraints(Pose, Args.max_dist, Args.min_seq_sep, Args.upstream_atom, Args.downstream_atom, Args.weight, True)
if Args.disulfide:
DisulfAllConstraints, DisulfSortedConstraints = get_pose_constraints(Pose, 3.5, 2, 'SG', 'SG', Args.weight, False)
AllConstraints.extend(DisulfAllConstraints)
# print AllConstraints
# print SortedConstraints
# print
# print
# print DisulfAllConstraints
# print DisulfSortedConstraints
# sys.exit()
CstName = OutputPdb.replace('.pdb', '_All.cst')
with open(CstName, 'w') as CstFile:
print>>CstFile, '\n'.join(AllConstraints)
BackboneBackboneCst, BackboneSidechainCst, SidechainSidechainCst = SortedConstraints
CstName = OutputPdb.replace('.pdb', '_BBBB.cst')
with open(CstName, 'w') as CstFile:
print>>CstFile, '\n'.join(BackboneBackboneCst)
CstName = OutputPdb.replace('.pdb', '_BBSC.cst')
with open(CstName, 'w') as CstFile:
print>>CstFile, '\n'.join(BackboneSidechainCst)
CstName = OutputPdb.replace('.pdb', '_SCSC.cst')
with open(CstName, 'w') as CstFile:
print>>CstFile, '\n'.join(SidechainSidechainCst)
CstName = OutputPdb.replace('.pdb', '_Disulf.cst')
with open(CstName, 'w') as CstFile:
print>>CstFile, '\n'.join(DisulfAllConstraints)
if __name__ == "__main__":
sys.exit(main())