-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathperceptron.py
49 lines (27 loc) · 1.21 KB
/
perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from numpy import genfromtxt, savetxt
from sklearn import linear_model
from sklearn.linear_model.perceptron import Perceptron
import matplotlib.pyplot as plt
def main():
#create the training & test sets, skipping the header row with [1:]
dataset_T = genfromtxt(open('Data/demoTrain.csv','r'), delimiter=',', dtype='f8')[:]
dataset_R = genfromtxt(open('Data/demoTarget.csv','r'), delimiter=',', dtype='f8')[:]
dataset_v = genfromtxt(open('Data/demoTest.csv','r'), delimiter=',', dtype='f8')[:]
trueData = genfromtxt(open('Data/validate.csv','r'), delimiter=',', dtype='f8')[:]
target = [x for x in dataset_R]
train = [x[:] for x in dataset_T]
validate = [x[:] for x in dataset_v]
y = [x for x in trueData]
test = genfromtxt(open('Data/demoTest.csv','r'), delimiter=',', dtype='f8')[:]
per = Perceptron(n_iter=2, shuffle=True)
per.fit(train, target)
#val = per.decision_function(validate)
val = per.predict(validate)
score = per.score(validate, y)
print str(score) +"\n"
for v in val:
print v
a= per.fit_transform(train,target)
print a
if __name__=="__main__":
main()