-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmain.py
98 lines (87 loc) · 2.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
__author__ = 'qiao'
"""
reference:
https://colab.research.google.com/drive/1HfutiEhHMJLXiWGT8pcipxT5L2TpYEdt?usp=sharing#scrollTo=1G6hT73KOzfd
"""
from beir import util, LoggingHandler
from beir.datasets.data_loader import GenericDataLoader
from beir.retrieval.evaluation import EvaluateRetrieval
from beir.retrieval.search.dense import DenseRetrievalExactSearch as DRES
from beir.reranking import Rerank
from models import DenseRetriever, CrossEncoder # DIY models
import torch
import argparse
import json
import os
import logging
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type=str,
default="scifact",
help="The evaluation dataset."
)
parser.add_argument(
"--query_enc_path",
type=str,
default="malteos/PubMedNCL",
help="Path to the query encoder."
)
parser.add_argument(
"--doc_enc_path",
type=str,
default="malteos/PubMedNCL",
help="Path to the document encoder."
)
parser.add_argument(
"--retriever_tokenizer_path",
type=str,
default="malteos/PubMedNCL",
help="Path to the retriever tokenizer."
)
parser.add_argument(
"--reranking", action='store_true',
help="Whether doing re-ranking."
)
parser.add_argument(
"--cross_enc_path",
type=str,
default="malteos/PubMedNCL",
help="Path to the cross encoder."
)
parser.add_argument(
"--reranker_tokenizer_path",
type=str,
default="malteos/PubMedNCL",
help="Path to the cross encoder tokenizer."
)
parser.add_argument(
"--top_k",
type=int,
default="100",
help="The number of top documents to re-rank."
)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
bi_encoder = DRES(DenseRetriever(args.query_enc_path, args.doc_enc_path, args.retriever_tokenizer_path, device), batch_size=16)
retriever = EvaluateRetrieval(bi_encoder, score_function="dot")
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/data/{}.zip".format(args.dataset)
out_dir = os.path.join(os.getcwd(), "data")
data_path = util.download_and_unzip(url, out_dir)
print("Dataset downloaded here: {}".format(data_path))
data_path = f'data/{args.dataset}'
corpus, queries, qrels = GenericDataLoader(data_path).load(split="test") # or split = "train" or "dev
results = retriever.retrieve(corpus, queries)
output = {'retrieval': EvaluateRetrieval.evaluate(qrels, results, retriever.k_values)}
if args.reranking:
cross_encoder = CrossEncoder(args.cross_enc_path, args.reranker_tokenizer_path, device)
reranker = Rerank(cross_encoder, batch_size=16)
rerank_results = reranker.rerank(corpus, queries, results, top_k=args.top_k)
output['reranking'] = EvaluateRetrieval.evaluate(qrels, rerank_results, retriever.k_values)
with open(f'results/{args.dataset}_results.json', 'w') as f:
json.dump(output, f, indent=4)