forked from ishitatsuyuki/LatencyFleX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlatencyflex.h
288 lines (267 loc) · 12.6 KB
/
latencyflex.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright 2021 Tatsuyuki Ishi
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LATENCYFLEX_H
#define LATENCYFLEX_H
#ifdef LATENCYFLEX_HAVE_PERFETTO
#include <perfetto.h>
PERFETTO_DEFINE_CATEGORIES(
perfetto::Category("latencyflex").SetDescription("LatencyFleX latency and throughput metrics"));
#else
#define TRACE_COUNTER(...)
#define TRACE_EVENT_BEGIN(...)
#define TRACE_EVENT_END(...)
#endif
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <mutex>
#include <thread>
#include <vector>
namespace lfx {
namespace internal {
// An exponentially weighted moving average estimator.
class EwmaEstimator {
public:
// `alpha`: Smoothing factor. Larger values means less smoothing, resulting in
// a bumpy but quick response.
// `full_weight`: Set to true to disable weight correction for initial
// samples. The estimator will start with a value of 0 weighted
// at 100% instead.
EwmaEstimator(double alpha, bool full_weight = false)
: alpha_(alpha), current_weight_(full_weight ? 1.0 : 0.0) {}
// Update the estimate with `value`. `value` must not be negative. If a
// negative exponent is used, then `value` must not be too small or the
// internal accumulator will overflow.
void update(double value) {
current_ = (1 - alpha_) * current_ + alpha_ * value;
current_weight_ = (1 - alpha_) * current_weight_ + alpha_;
}
double get() const {
if (current_weight_ == 0) {
return 0;
}
return current_ / current_weight_;
}
private:
double alpha_;
double current_ = 0;
double current_weight_;
};
} // namespace internal
enum Phases { kUp = 0, kDown, kNumPhases };
// Tracks and computes frame time, latency and the desired sleep time before
// next tick. All time is in nanoseconds. The clock domain doesn't matter as
// long as it's a single consistent clock.
//
// Access must be externally synchronized.
class LatencyFleX {
public:
LatencyFleX() : latency_(0.3), inv_throughtput_(0.3), proj_correction_(0.5, true) {
std::fill(std::begin(frame_begin_ids_), std::end(frame_begin_ids_), UINT64_MAX);
}
// Get the desired wake-up time. Sleep until this time, then call `BeginFrame()`. This function
// must be called *exactly once* before each call to `BeginFrame()`. Calling this the second time
// with the same `frame_id` will corrupt the internal time tracking.
//
// If a wait target cannot be determined due to lack of data, then `0` is
// returned.
uint64_t GetWaitTarget(uint64_t frame_id) {
if (prev_frame_end_id_ != UINT64_MAX) {
size_t phase = frame_id % kNumPhases;
double invtpt = inv_throughtput_.get();
int64_t comp_to_apply = 0;
if (frame_end_projection_base_ == UINT64_MAX) {
frame_end_projection_base_ = prev_frame_end_ts_;
} else {
// The prediction error is equal to (actual latency) - (expected latency).
// As we adapt our latency estimator to the actual latency values, this
// will eventually converge as long as we are not constantly overpacing,
// building a queue at a faster pace than the estimator can adapt.
// In the section below, we attempt to apply additional compensation in
// the case of delay increase, to prevent extra queuing as much as possible.
int64_t prediction_error =
(int64_t)prev_frame_end_ts_ -
(int64_t)(frame_end_projection_base_ +
frame_end_projected_ts_[prev_frame_end_id_ % kMaxInflightFrames]);
TRACE_COUNTER("latencyflex", "Prediction error", prediction_error);
int64_t prev_comp_applied = comp_applied_[prev_frame_end_id_ % kMaxInflightFrames];
// We need to limit the compensation to delay increase, or otherwise we would cancel out the
// regular delay decrease from our pacing. To achieve this, we treat any early prediction as
// having prediction error of zero.
//
// We also want to cancel out the counter-reaction from our previous compensation, so what
// we essentially want here is `prediction_error_ - prev_prediction_error_ +
// prev_comp_applied`. But since we clamp prediction_error_ and prev_prediction_error_,
// the naive approach of adding prev_comp_applied directly would have a bias toward
// overcompensation. Consider the example below where we're pacing at the correct (100%)
// rate but things arrives late due to reason that are *not* queuing (noise):
// 5ms late, 5ms late, ... (a period longer than our latency) ... , 0ms
// We would compensate -5ms on the first frame, bringing the prediction error to 0. But when
// the 0ms frame arrives, the prediction error becomes -5ms due to our overcompensation.
// Due to its negativity, we don't recompensate for this decrease: this is the bias.
//
// The solution here is to include prev_comp_applied as a part of clamping equation, which
// allows it to also undercompensate when it makes sense. It seems to do a great job on
// preventing prediction error from getting stuck in a state that is drift away.
proj_correction_.update(
std::max(INT64_C(0), prediction_error) -
std::max(INT64_C(0), prev_prediction_error_ - prev_comp_applied));
prev_prediction_error_ = prediction_error;
// Try to cancel out any unintended delay happened to previous frame start. This is
// primarily meant for cases where a frame time spike happens and we get backpressured
// on the main thread. prev_forced_correction_ will stay high until our prediction catches
// up, canceling out any excessive correction we might end up doing.
comp_to_apply = std::round(proj_correction_.get());
comp_applied_[frame_id % kMaxInflightFrames] = comp_to_apply;
TRACE_COUNTER("latencyflex", "Delay Compensation", comp_to_apply);
}
// The target wakeup time.
uint64_t target =
(int64_t)frame_end_projection_base_ +
(int64_t)frame_end_projected_ts_[prev_frame_begin_id_ % kMaxInflightFrames] +
comp_to_apply +
(int64_t)std::round((((int64_t)frame_id - (int64_t)prev_frame_begin_id_) +
1 / (phase == kUp ? up_factor_ : 1) - 1) *
invtpt / down_factor_ -
latency_.get());
// The projection is something close to the predicted frame end time, but it is always paced
// at down_factor * throughput, which prevents delay compensation from kicking in until it's
// actually necessary (i.e. we're overpacing).
uint64_t new_projection =
(int64_t)frame_end_projected_ts_[prev_frame_begin_id_ % kMaxInflightFrames] +
comp_to_apply +
(int64_t)std::round(((int64_t)frame_id - (int64_t)prev_frame_begin_id_) * invtpt /
down_factor_);
frame_end_projected_ts_[frame_id % kMaxInflightFrames] = new_projection;
TRACE_EVENT_BEGIN(
"latencyflex", "projection",
perfetto::Track(track_base_ + frame_id % kMaxInflightFrames + kMaxInflightFrames),
target);
TRACE_EVENT_END(
"latencyflex",
perfetto::Track(track_base_ + frame_id % kMaxInflightFrames + kMaxInflightFrames),
frame_end_projection_base_ + new_projection);
return target;
} else {
return 0;
}
}
// Begin the frame. Called on the main/simulation thread.
//
// This call must be preceded with a call to `GetWaitTarget()`.
//
// `target` should be the timestamp returned by `GetWaitTarget()`.
// `timestamp` should be calculated as follows:
// - If a sleep is not performed (because the wait target has already been
// passed), then pass the current time.
// - If a sleep is performed (wait target was not in the past), then pass the
// wait target as-is. This allows compensating for any latency incurred by
// the OS for waking up the process.
void BeginFrame(uint64_t frame_id, uint64_t target, uint64_t timestamp) {
TRACE_EVENT_BEGIN("latencyflex", "frame",
perfetto::Track(track_base_ + frame_id % kMaxInflightFrames), timestamp);
frame_begin_ids_[frame_id % kMaxInflightFrames] = frame_id;
frame_begin_ts_[frame_id % kMaxInflightFrames] = timestamp;
prev_frame_begin_id_ = frame_id;
if (target != 0) {
int64_t forced_correction = timestamp - target;
frame_end_projected_ts_[frame_id % kMaxInflightFrames] += forced_correction;
comp_applied_[frame_id % kMaxInflightFrames] += forced_correction;
prev_prediction_error_ += forced_correction;
}
}
// End the frame. Called from a rendering-related thread.
//
// The timestamp should be obtained in one of the following ways:
// - Run a thread dedicated to wait for command buffer completion fences.
// Capture the timestamp on CPU when the fence is signaled.
// - Capture a GPU timestamp when frame ends, then convert it into a clock
// domain on CPU (known as "timestamp calibration").
//
// If `latency` and `frame_time` are not null, then the latency and the frame
// time are returned respectively, or UINT64_MAX is returned if measurement is
// unavailable.
void EndFrame(uint64_t frame_id, uint64_t timestamp, uint64_t *latency, uint64_t *frame_time) {
size_t phase = frame_id % kNumPhases;
int64_t latency_val = -1;
int64_t frame_time_val = -1;
if (frame_begin_ids_[frame_id % kMaxInflightFrames] == frame_id) {
frame_begin_ids_[frame_id % kMaxInflightFrames] = UINT64_MAX;
if (frame_time && prev_frame_end_id_ != UINT64_MAX)
*frame_time = timestamp - prev_frame_real_end_ts_;
prev_frame_real_end_ts_ = timestamp;
timestamp = std::max(timestamp, prev_frame_end_ts_ + target_frame_time);
auto frame_start = frame_begin_ts_[frame_id % kMaxInflightFrames];
latency_val = (int64_t)timestamp - (int64_t)frame_start;
if (phase == kDown) {
latency_.update(latency_val);
}
if (latency)
*latency = latency_val;
TRACE_COUNTER("latencyflex", "Latency", latency_val);
TRACE_COUNTER("latencyflex", "Latency (Estimate)", latency_.get());
if (prev_frame_end_id_ != UINT64_MAX) {
if (frame_id > prev_frame_end_id_) {
auto frames_elapsed = frame_id - prev_frame_end_id_;
frame_time_val =
((int64_t)timestamp - (int64_t)prev_frame_end_ts_) / (int64_t)frames_elapsed;
frame_time_val = std::clamp(frame_time_val, INT64_C(1000000), INT64_C(50000000));
if (phase == kUp) {
inv_throughtput_.update(frame_time_val);
}
TRACE_COUNTER("latencyflex", "Frame Time", frame_time_val);
TRACE_COUNTER("latencyflex", "Frame Time (Estimate)", inv_throughtput_.get());
}
}
prev_frame_end_id_ = frame_id;
prev_frame_end_ts_ = timestamp;
}
if (frame_time)
*frame_time = frame_time_val;
TRACE_EVENT_END("latencyflex", perfetto::Track(track_base_ + frame_id % kMaxInflightFrames),
timestamp);
}
void Reset() {
auto new_instance = LatencyFleX();
#ifdef LATENCYFLEX_HAVE_PERFETTO
new_instance.track_base_ = track_base_ + 2 * kMaxInflightFrames;
#endif
new_instance.target_frame_time = target_frame_time;
*this = new_instance;
}
uint64_t target_frame_time = 0;
private:
static const std::size_t kMaxInflightFrames = 16;
uint64_t frame_begin_ts_[kMaxInflightFrames] = {};
uint64_t frame_begin_ids_[kMaxInflightFrames];
uint64_t frame_end_projected_ts_[kMaxInflightFrames] = {};
uint64_t frame_end_projection_base_ = UINT64_MAX;
int64_t comp_applied_[kMaxInflightFrames] = {};
uint64_t prev_frame_begin_id_ = UINT64_MAX;
double up_factor_ = 1.10;
double down_factor_ = 0.985;
int64_t prev_prediction_error_ = 0;
uint64_t prev_frame_end_id_ = UINT64_MAX;
uint64_t prev_frame_end_ts_ = 0;
uint64_t prev_frame_real_end_ts_ = 0;
internal::EwmaEstimator latency_;
internal::EwmaEstimator inv_throughtput_;
internal::EwmaEstimator proj_correction_;
#ifdef LATENCYFLEX_HAVE_PERFETTO
uint64_t track_base_ = 0;
#endif
};
} // namespace lfx
#endif // LATENCYFLEX_H