-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextract_features.py
254 lines (161 loc) · 7.52 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import argparse
import cv2
import numpy as np
import os
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision
from model.unsupervised_model import Model as orgModel
from model.kpt_detector import Model
from PIL import Image
import seaborn as sns
# resume, checkpoint, num keypoints
def load_model(resume, output_dir, image_size=256, num_keypoints = 10):
model = Model(num_keypoints)
# Assume GPU 0
torch.cuda.set_device(0)
model.cuda(0)
save_dir = os.path.join(output_dir, 'keypoints_confidence')
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
os.mkdir(os.path.join(save_dir, 'train'))
os.mkdir(os.path.join(save_dir, 'test'))
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(0)
checkpoint = torch.load(resume, map_location=loc)
output_shape = (int(image_size/4), int(image_size/4))
org_model = orgModel(num_keypoints, output_shape=output_shape)
org_model.load_state_dict(checkpoint['state_dict'])
org_model_dict = org_model.state_dict()
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in org_model_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print("=> loaded checkpoint '{}' (epoch {})"
.format(resume, checkpoint['epoch']))
model.eval()
return model, save_dir
def get_image_tensor(frame, size = 256):
current = Image.fromarray(frame)
crop_percent = 1.0
final_sz = size
resize_sz = np.round(final_sz / crop_percent).astype(np.int32)
current = torchvision.transforms.Resize((resize_sz, resize_sz))(current)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
to_tensor = transforms.Compose([
transforms.Resize(size),
transforms.CenterCrop(size),
transforms.ToTensor(),
normalize,])
current_tensor = to_tensor(current)
return current_tensor.unsqueeze(0)
def compute_keypoints(inputs, model, width = 1024, height = 570):
# Assume GPU 0
loc = 'cuda:{}'.format(0)
inputs = inputs.to(loc)
output = model(inputs)
xy = torch.stack((output[0][0], output[0][1]), dim=2).detach().cpu().numpy()[0]+1
scale_x = (width / 2.0)
scale_y = (height / 2.0)
to_plot = []
confidence = output[5].detach().cpu().numpy()[0]
covs = torch.stack((output[6][0], output[6][1], output[6][2]), dim=2).detach().cpu().numpy()[0]+1
for i in range(0,xy.shape[0]):
st_y = int(xy[i,1]*scale_y); st_x = int(xy[i,0]*scale_x)
to_plot.append([st_y, st_x])
return xy, to_plot, confidence, covs
# Parse input arguments.
ap = argparse.ArgumentParser()
ap.add_argument("--train_dir", help="Path to train directory with directory of images", type = str)
ap.add_argument("--test_dir", help="Path to test directory with directory of images", type = str)
ap.add_argument("--resume", help="Path to checkpoint to resume", type = str)
ap.add_argument("--output_dir", help="Output directory to store the keypoints", type = str)
ap.add_argument("--imsize", default=256, help="Training image size", type=int)
ap.add_argument("--nkpts", default=10, help="Number of discovered keypoints", type=int)
args = vars(ap.parse_args())
model, save_dir = load_model(args['resume'], args['output_dir'], args['imsize'], args['nkpts'])
# input train & test directory
train_dir = args['train_dir']
test_dir = args['test_dir']
counter = 0
# Extract for train dir
for vid in sorted(os.listdir(train_dir)):
print(counter, vid)
counter = counter + 1
keypoint_array =[]
conf_array = []
covs_array = []
vid_name = vid
current_directory = os.path.join(train_dir, vid)
save_img_dir = os.path.join(save_dir, 'train_samples')
num_imgs = len(os.listdir(current_directory))
sample_ids = np.random.permutation(num_imgs)
sample_ids = sample_ids[:min(100, num_imgs)]
if not os.path.isdir(save_img_dir):
os.makedirs(save_img_dir)
for ix, images in enumerate(sorted(os.listdir(current_directory))):
draw_frame = cv2.cvtColor(cv2.imread(os.path.join(current_directory, images),
cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
height, width, _ = draw_frame.shape
input_tensor = get_image_tensor(draw_frame)
_, plot_keypoints, confidence, covs = compute_keypoints(input_tensor, model, width=width, height=height)
if ix == 0:
values = sns.color_palette("husl", len(plot_keypoints))
colors = []
for i in range(len(values)):
color = [int(values[i][0]*255), int(values[i][1]*255), int(values[i][2]*255)]
colors.append(color)
image = draw_frame
# For visualization (randomly sample 100 images)
if ix in sample_ids:
for c, j in enumerate(range(len(plot_keypoints))):
item = plot_keypoints[j]
image = cv2.circle(image, (item[1], item[0]),
radius=2, color=colors[c], thickness = 2)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(save_img_dir, 'image_'+str(ix)+'.png'), image)
conf_array.append(confidence)
keypoint_array.append(plot_keypoints)
covs_array.append(covs)
print(np.array(keypoint_array).shape, np.array(conf_array).shape, np.array(covs_array).shape)
np.savez(os.path.join(save_dir, 'train', vid_name), keypoints = keypoint_array, confidence = conf_array,
covs = covs_array)
# Extract for test dir
for vid in sorted(os.listdir(test_dir)):
print(counter, vid)
counter = counter + 1
keypoint_array =[]
conf_array = []
covs_array = []
vid_name = vid
current_directory = os.path.join(test_dir, vid)
save_img_dir = os.path.join(save_dir, 'test_samples')
num_imgs = len(os.listdir(current_directory))
sample_ids = np.random.permutation(num_imgs)
sample_ids = sample_ids[:min(100, num_imgs)]
if not os.path.isdir(save_img_dir):
os.makedirs(save_img_dir)
for ix, images in enumerate(sorted(os.listdir(current_directory))):
draw_frame = cv2.cvtColor(cv2.imread(os.path.join(current_directory, images), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
height, width, _ = draw_frame.shape
input_tensor = get_image_tensor(draw_frame)
_, plot_keypoints, confidence, covs = compute_keypoints(input_tensor, model, width=width, height=height)
# For visualization (randomly sample 100 images)
if ix in sample_ids:
for c, j in enumerate(range(len(plot_keypoints))):
item = plot_keypoints[j]
image = cv2.circle(image, (item[1], item[0]),
radius=2, color=colors[c], thickness = 2)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(save_img_dir, 'image_'+str(ix)+'.png'), image)
conf_array.append(confidence)
keypoint_array.append(plot_keypoints)
covs_array.append(covs)
print(np.array(keypoint_array).shape, np.array(conf_array).shape, np.array(covs_array).shape)
np.savez(os.path.join(save_dir, 'test', vid_name), keypoints = keypoint_array, confidence = conf_array,
covs = covs_array)