-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathheuristics.py
465 lines (269 loc) · 12.6 KB
/
heuristics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import torch
import numpy as np
import pickle
from scipy.ndimage import gaussian_filter1d
import math as mh
from copy import deepcopy
from util.datasets import LabelFunction
FRAME_WIDTH_TOP = 144
FRAME_HEIGHT_TOP = 144
# Our dataset has 21 frames.
# TODO: Make this more flexible.
MIDDLE_INDEX = 10
EPSILON = 0.000001
class RandomLabeler(LabelFunction):
''' Returns a random value from 0 to 1. '''
name = 'random_labeler'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
label_tensor = torch.from_numpy(np.array([np.random.rand()]))
label_tensor = label_tensor.to(states.device)
return torch.mean(label_tensor.float())
def plot(self, ax, states, label, width, length):
return ax
class MiddleSpeedResident(LabelFunction):
''' Returns speed of the resident centroid point. '''
name = 'middle_speed_resident'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
keypoints = unnormalize(states)
speed = speed_centroid(keypoints[MIDDLE_INDEX-2,0], keypoints[MIDDLE_INDEX-2,1],
keypoints[MIDDLE_INDEX+2,0], keypoints[MIDDLE_INDEX+2, 1])
label_tensor = torch.from_numpy(np.array(speed))
label_tensor = label_tensor.to(states.device)
return label_tensor.float()
def plot(self, ax, states, label, width, length):
return ax
class MiddleSpeedIntruder(LabelFunction):
''' Returns speed of the intruder centroid point. '''
name = 'middle_speed_intruder'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
#states: shape 21,20
keypoints = unnormalize(states)
speed = speed_centroid(keypoints[MIDDLE_INDEX-2,10], keypoints[MIDDLE_INDEX-2,11],
keypoints[MIDDLE_INDEX+2, 10], keypoints[MIDDLE_INDEX+2, 11])
label_tensor = torch.from_numpy(np.array(speed))
label_tensor = label_tensor.to(states.device)
return label_tensor.float()
class MiddleAngularSpeedResident(LabelFunction):
''' Returns angular speed of the resident. '''
name = 'middle_angular_speed_resident'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
keypoints = unnormalize(states)
middle_index = 10
speed = angular_speed(keypoints[MIDDLE_INDEX-2,2], keypoints[MIDDLE_INDEX-2,3],
keypoints[MIDDLE_INDEX+2,2], keypoints[MIDDLE_INDEX+2, 3])
label_tensor = torch.from_numpy(np.array(speed))
label_tensor = label_tensor.to(states.device)
return label_tensor.float()
def plot(self, ax, states, label, width, length):
return ax
class MiddleAngularSpeedIntruder(LabelFunction):
''' Returns angular speed of intruder. '''
name = 'middle_angular_speed_intruder'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
#states: shape 21,20
keypoints = unnormalize(states)
speed = angular_speed(keypoints[MIDDLE_INDEX-2,12], keypoints[MIDDLE_INDEX-2,13],
keypoints[MIDDLE_INDEX+2, 12], keypoints[MIDDLE_INDEX+2, 13])
label_tensor = torch.from_numpy(np.array(speed))
label_tensor = label_tensor.to(states.device)
return label_tensor.float()
def plot(self, ax, states, label, width, length):
return ax
class MiddleAxisRatioResident(LabelFunction):
''' Returns ratio between the major and minor axis length of the fitted ellipse
to the resident fly body. '''
name = 'middle_axis_ratio_resident'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
keypoints = unnormalize(states)
if keypoints[MIDDLE_INDEX, 5] > EPSILON:
ratio = keypoints[MIDDLE_INDEX, 4]/keypoints[MIDDLE_INDEX, 5]
else:
ratio = 1.0
label_tensor = torch.from_numpy(np.array(ratio))
label_tensor = label_tensor.to(states.device)
return torch.mean(label_tensor.float())
def plot(self, ax, states, label, width, length):
return ax
class MiddleAxisRatioIntruder(LabelFunction):
''' Returns ratio between the major and minor axis length of the fitted ellipse
to the intruder fly body. '''
name = 'middle_axis_ratio_intruder'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
keypoints = unnormalize(states)
if keypoints[MIDDLE_INDEX, 15] > EPSILON:
ratio = keypoints[MIDDLE_INDEX, 14]/keypoints[MIDDLE_INDEX, 15]
else:
ratio = 1.0
label_tensor = torch.from_numpy(np.array(ratio))
label_tensor = label_tensor.to(states.device)
return torch.mean(label_tensor.float())
def plot(self, ax, states, label, width, length):
return ax
class MiddleAngleSocial(LabelFunction):
'''Facing angle of resident. This is the angle between resident fly orientation
and the line between resident and intruder fly centroid.'''
name = 'middle_angle_social'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
keypoints = unnormalize(states)
angle = social_angle(keypoints[MIDDLE_INDEX, :10], keypoints[MIDDLE_INDEX, 10:])
label_tensor = torch.from_numpy(np.array(angle))
label_tensor = label_tensor.to(states.device)
return torch.mean(label_tensor.float())
def plot(self, ax, states, label, width, length):
return ax
class MiddleAngleSocialIntruder(LabelFunction):
'''Facing angle of intruder. This is the angle between intruder fly orientation
and the line between resident and intruder fly centroid.'''
name = 'middle_angle_social_intruder'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
keypoints = unnormalize(states)
angle = social_angle(keypoints[MIDDLE_INDEX, 10:], keypoints[MIDDLE_INDEX, :10])
label_tensor = torch.from_numpy(np.array(angle))
label_tensor = label_tensor.to(states.device)
return torch.mean(label_tensor.float())
def plot(self, ax, states, label, width, length):
return ax
class MiddleDistCentroid(LabelFunction):
'''Distance between resident and intruder fly centroid.'''
name = 'middle_dist_centroid'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
keypoints = unnormalize(states)
middle_index = 10
dist_x = keypoints[MIDDLE_INDEX, 0] - keypoints[MIDDLE_INDEX, 10]
dist_y = keypoints[MIDDLE_INDEX, 1] - keypoints[MIDDLE_INDEX, 11]
dist = np.linalg.norm([dist_x, dist_y])
label_tensor = torch.from_numpy(np.array(dist))
label_tensor = label_tensor.to(states.device)
return torch.mean(label_tensor.float())
def plot(self, ax, states, label, width, length):
return ax
class MiddleWingAngleMinResident(LabelFunction):
'''Minimum wing angle of resident.'''
name = 'middle_wing_angle_min_resident'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
keypoints = unnormalize(states)
angle_l, angle_r = wing_angles(keypoints[MIDDLE_INDEX, :10])
min_angle = np.minimum(angle_l, angle_r)
label_tensor = torch.from_numpy(np.array(min_angle))
label_tensor = label_tensor.to(states.device)
return torch.mean(label_tensor.float())
def plot(self, ax, states, label, width, length):
return ax
class MiddleWingAngleMaxResident(LabelFunction):
'''Maximum wing angle of resident.'''
name = 'middle_wing_angle_max_resident'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
keypoints = unnormalize(states)
angle_l, angle_r = wing_angles(keypoints[MIDDLE_INDEX, :10])
max_angle = np.maximum(angle_l, angle_r)
label_tensor = torch.from_numpy(np.array(max_angle))
label_tensor = label_tensor.to(states.device)
return torch.mean(label_tensor.float())
def plot(self, ax, states, label, width, length):
return ax
class MiddleWingAngleMinIntruder(LabelFunction):
'''Minimum wing angle of intruder.'''
name = 'middle_wing_angle_min_intruder'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
keypoints = unnormalize(states)
angle_l, angle_r = wing_angles(keypoints[MIDDLE_INDEX, 10:])
min_angle = np.minimum(angle_l, angle_r)
label_tensor = torch.from_numpy(np.array(min_angle))
label_tensor = label_tensor.to(states.device)
return torch.mean(label_tensor.float())
def plot(self, ax, states, label, width, length):
return ax
class MiddleWingAngleMaxIntruder(LabelFunction):
'''Maximum wing angle of intruder.'''
name = 'middle_wing_angle_max_intruder'
def __init__(self, lf_config):
super().__init__(lf_config, output_dim=1)
def label_func(self, states, actions, true_label=None):
keypoints = unnormalize(states)
angle_l, angle_r = wing_angles(keypoints[MIDDLE_INDEX, 10:])
max_angle = np.maximum(angle_l, angle_r)
label_tensor = torch.from_numpy(np.array(max_angle))
label_tensor = label_tensor.to(states.device)
return torch.mean(label_tensor.float())
def plot(self, ax, states, label, width, length):
return ax
def speed_centroid(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
return np.linalg.norm([dx, dy])
def unnormalize(data):
"""Undo normalize."""
data_2 = np.zeros(data.shape)
state_dim = data_2.shape[1] // 2
keypoint_indeces = [[0, 1], [6, 7], [8, 9]]
length_indeces = [4,5]
# Data is sequence_num x seq_len x dims
# Assume square image
shift = int(FRAME_WIDTH_TOP / 2)
scale = int(FRAME_WIDTH_TOP / 2)
for index in keypoint_indeces:
data_2[:, index[0]] = data[:, index[0]]* scale + shift
data_2[:, index[1]] = data[:, index[1]]*scale + shift
data_2[:, index[0] + state_dim] = data[:, index[0] + state_dim]* scale + shift
data_2[:, index[1] + state_dim] = data[:, index[1] + state_dim]* scale + shift
for index in length_indeces:
data_2[:, index] = data[:, index]*scale
data_2[:, index + state_dim] = data[:, index + state_dim]*scale
data_2[:, 2:4] = data[:, 2:4]
data_2[:, 12:14] = data[:, 12:14]
return data_2
def social_angle(x1, x2):
x_dif = x1[0] - x2[0]
y_dif = x1[1] - x2[1]
theta = (np.arctan2(y_dif, x_dif) + 2*np.pi) % (2*np.pi)
#facing angle of fly
ori_body = (np.arctan2(-1*x1[2], x1[3]) + 2*np.pi) % (np.pi*2)
ang = np.mod(theta - ori_body, 2*np.pi)
return np.minimum(ang, 2*np.pi - ang)
def dist_centroid(x1, y1, x2, y2):
x_dif = np.mean(x1) - np.mean(x2)
y_dif = np.mean(y1) - np.mean(y2)
return np.linalg.norm([x_dif, y_dif])
def interior_angle(p0, p1, p2):
v0 = np.array(p0) - np.array(p1)
v1 = np.array(p1) - np.array(p2)
return mh.atan2(np.linalg.det([v0, v1]), np.dot(v0, v1))
def wing_angles(pose):
wing_l = pose[6:8]
wing_r = pose[8:10]
center = pose[0:2]
back_point = pose[0:2] + [-1*pose[3], pose[2]]
angle_l = interior_angle(wing_l, center, back_point)%(np.pi)
angle_r = interior_angle(wing_r, center, back_point)%(np.pi)
return np.minimum(angle_l, np.pi - angle_l), np.minimum(angle_r, np.pi - angle_r)
def angular_speed(sin_1, cos_1, sin_2, cos_2):
ori_1 = mh.atan2(sin_1, cos_1)
ori_2 = mh.atan2(sin_2, cos_2)
ang = np.mod(ori_1 - ori_2, 2*np.pi)
return np.minimum(ang, 2*np.pi - ang)