From 2c05845f5c31ceeadaa30fe988edb8a43558bcd9 Mon Sep 17 00:00:00 2001 From: ni1o1 <53589767+ni1o1@users.noreply.github.com> Date: Wed, 4 May 2022 14:13:10 +0800 Subject: [PATCH] update --- docs/source/analysis.rst | 27 ++++++++++++++++++++ src/pybdshadow/analysis.py | 36 +++++++++++++-------------- src/pybdshadow/tests/test_analysis.py | 9 ++++--- 3 files changed, 51 insertions(+), 21 deletions(-) diff --git a/docs/source/analysis.rst b/docs/source/analysis.rst index 7d24307..7b13677 100644 --- a/docs/source/analysis.rst +++ b/docs/source/analysis.rst @@ -9,6 +9,33 @@ Shadow coverage Shadow coverage -------------------------------------- +.. function:: pybdshadow.cal_sunshine(buildings, day='2022-01-01', roof=False,grids = gpd.GeoDataFrame(), accuracy=1, precision=3600, padding=0) + +Calculate the sunshine time in given date. + +**Parameters** + +buildings : GeoDataFrame + Buildings. coordinate system should be WGS84 +day : str + the day to calculate the sunshine +roof : bool + whether to calculate roof shadow. +grids : GeoDataFrame + grids generated by TransBigData in study area +precision : number + time precision(s) +padding : number + padding time before and after sunrise and sunset +accuracy : number + size of grids. + +**Return** + +grids : GeoDataFrame + grids generated by TransBigData in study area, each grids have a `time` column store the sunshine time + + .. function:: pybdshadow.cal_sunshadows(buildings, cityname='somecity', dates=['2022-01-01'], gap=3600,roof=True, include_building=True,save_shadows=False,printlog=False) Calculate the sunlight shadow in different date with given time gap. diff --git a/src/pybdshadow/analysis.py b/src/pybdshadow/analysis.py index 6a9bf81..9f95e96 100644 --- a/src/pybdshadow/analysis.py +++ b/src/pybdshadow/analysis.py @@ -9,9 +9,9 @@ from .preprocess import bd_preprocess -def get_timetable(lon, lat, dates=['2022-01-01'], gap=3600, padding=1800): +def get_timetable(lon, lat, dates=['2022-01-01'], precision=3600, padding=1800): # generate timetable - def get_timeSeries(day, lon, lat, gap=3600, padding=1800): + def get_timeSeries(day, lon, lat, precision=3600, padding=1800): date = pd.to_datetime(day+' 12:45:33.959797119') times = get_times(date, lon, lat) date_sunrise = times['sunrise'] @@ -21,15 +21,15 @@ def get_timeSeries(day, lon, lat, gap=3600, padding=1800): times = pd.to_datetime(pd.Series(range( timestamp_sunrise.iloc[0]+padding*1000000000, timestamp_sunset.iloc[0]-padding*1000000000, - gap*1000000000))) + precision*1000000000))) return times dates = pd.DataFrame(pd.concat( - [get_timeSeries(date, lon, lat, gap,padding) for date in dates]), columns=['datetime']) + [get_timeSeries(date, lon, lat, precision,padding) for date in dates]), columns=['datetime']) dates['date'] = dates['datetime'].apply(lambda r: str(r)[:19]) return dates -def cal_sunshine(buildings, day='2022-01-01', roof=False,grids = gpd.GeoDataFrame(), accuracy=1, gap=3600, padding=0): +def cal_sunshine(buildings, day='2022-01-01', roof=False,grids = gpd.GeoDataFrame(), accuracy=1, precision=3600, padding=0): ''' Calculate the sunshine time in given date. @@ -43,8 +43,8 @@ def cal_sunshine(buildings, day='2022-01-01', roof=False,grids = gpd.GeoDataFra whether to calculate roof shadow. grids : GeoDataFrame grids generated by TransBigData in study area - gap : number - time gap(s) + precision : number + time precision(s) padding : number padding time before and after sunrise and sunset accuracy : number @@ -68,19 +68,19 @@ def cal_sunshine(buildings, day='2022-01-01', roof=False,grids = gpd.GeoDataFra timestamp_sunset.iloc[0]-timestamp_sunrise.iloc[0])/(1000000000*3600) # Generate shadow every 1800 s - shadows = cal_sunshadows(buildings, dates=[day], gap=gap, padding=padding) + shadows = cal_sunshadows(buildings, dates=[day], precision=precision, padding=padding) # Grid analysis of shadow cover duration(ground). grids = cal_shadowcoverage( - shadows, buildings, grids = grids,roof=roof, gap=gap, accuracy=accuracy) + shadows, buildings, grids = grids,roof=roof, precision=precision, accuracy=accuracy) grids['Hour'] = sunlighthour-grids['time']/3600 return grids -def cal_sunshadows(buildings, cityname='somecity', dates=['2022-01-01'], gap=3600, padding=0, +def cal_sunshadows(buildings, cityname='somecity', dates=['2022-01-01'], precision=3600, padding=0, roof=True, include_building=True, save_shadows=False, printlog=False): ''' - Calculate the sunlight shadow in different date with given time gap. + Calculate the sunlight shadow in different date with given time precision. **Parameters** @@ -90,8 +90,8 @@ def cal_sunshadows(buildings, cityname='somecity', dates=['2022-01-01'], gap=360 Cityname. If save_shadows, this function will create `result/cityname` folder to save the shadows dates : list list of dates - gap : number - time gap(s) + precision : number + time precision(s) padding : number padding time before and after sunrise and sunset roof : bool @@ -110,7 +110,7 @@ def cal_sunshadows(buildings, cityname='somecity', dates=['2022-01-01'], gap=360 ''' # 获取城市位置 lon, lat = buildings['geometry'].iloc[0].bounds[:2] - timetable = get_timetable(lon, lat, dates, gap, padding) + timetable = get_timetable(lon, lat, dates, precision, padding) import os if save_shadows: if not os.path.exists('result'): @@ -143,7 +143,7 @@ def cal_sunshadows(buildings, cityname='somecity', dates=['2022-01-01'], gap=360 return allshadow -def cal_shadowcoverage(shadows_input, buildings, grids = gpd.GeoDataFrame(),roof=True, gap=3600, accuracy=1): +def cal_shadowcoverage(shadows_input, buildings, grids = gpd.GeoDataFrame(),roof=True, precision=3600, accuracy=1): ''' Calculate the sunlight shadow coverage time for given area. @@ -157,8 +157,8 @@ def cal_shadowcoverage(shadows_input, buildings, grids = gpd.GeoDataFrame(),roof grids generated by TransBigData in study area roof : bool If true roof shadow, false then ground shadow - gap : number - time gap(s), which is for calculation of coverage time + precision : number + time precision(s), which is for calculation of coverage time accuracy : number size of grids. @@ -193,6 +193,6 @@ def cal_shadowcoverage(shadows_input, buildings, grids = gpd.GeoDataFrame(),roof drop_duplicates(subset=['LONCOL', 'LATCOL','date']).groupby(['LONCOL', 'LATCOL'])['geometry'].\ count().rename('count').reset_index() grids = pd.merge(grids, gridcount, how='left') - grids['time'] = grids['count'].fillna(0)*gap + grids['time'] = grids['count'].fillna(0)*precision return grids \ No newline at end of file diff --git a/src/pybdshadow/tests/test_analysis.py b/src/pybdshadow/tests/test_analysis.py index 3835aa2..e66b77a 100644 --- a/src/pybdshadow/tests/test_analysis.py +++ b/src/pybdshadow/tests/test_analysis.py @@ -29,6 +29,9 @@ def test_analysis(self): buildings = pybdshadow.bd_preprocess(buildings) #分析 date = '2022-01-01' - shadows = pybdshadow.cal_sunshadows(buildings,dates = [date],gap=3600) - bdgrids = pybdshadow.cal_shadowcoverage(shadows,buildings,gap = 3600,accuracy=2) - assert len(bdgrids)==1185 \ No newline at end of file + shadows = pybdshadow.cal_sunshadows(buildings,dates = [date],precision=3600) + bdgrids = pybdshadow.cal_shadowcoverage(shadows,buildings,precision = 3600,accuracy=2) + assert len(bdgrids)==1185 + + grids = pybdshadow.cal_sunshine(buildings) + assert len(grids)==1882 \ No newline at end of file