-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathread_log_marepo.py
executable file
·148 lines (113 loc) · 6.12 KB
/
read_log_marepo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python3
# Copyright © Niantic, Inc. 2024.
import argparse
import logging
import os.path as osp
import sys
from distutils.util import strtobool
Wayspots=['wayspots_bears', 'wayspots_cubes', 'wayspots_inscription', 'wayspots_lawn', 'wayspots_map',
'wayspots_squarebench', 'wayspots_statue', 'wayspots_tendrils', 'wayspots_therock', 'wayspots_wintersign']
Mapfree_val = [f'mapfree_s{num:05d}' for num in range(410,460)]
Seven_Scenes=['7scenes_chess', '7scenes_fire', '7scenes_heads', '7scenes_office', '7scenes_pumpkin', '7scenes_redkitchen', '7scenes_stairs']
Seven_Scenes_Pgt=['pgt_7scenes_chess', 'pgt_7scenes_fire', 'pgt_7scenes_heads', 'pgt_7scenes_office', 'pgt_7scenes_pumpkin', 'pgt_7scenes_redkitchen', 'pgt_7scenes_stairs']
Twelve_Scenes=["12scenes_apt1_kitchen", "12scenes_apt1_living", "12scenes_apt2_bed", "12scenes_apt2_kitchen", "12scenes_apt2_living", "12scenes_apt2_luke", "12scenes_office1_gates362", "12scenes_office1_gates381", "12scenes_office1_lounge", "12scenes_office1_manolis", "12scenes_office2_5a", "12scenes_office2_5b"]
Twelve_Scenes_Pgt=["pgt_12scenes_apt1_kitchen", "pgt_12scenes_apt1_living", "pgt_12scenes_apt2_bed", "pgt_12scenes_apt2_kitchen", "pgt_12scenes_apt2_living", "pgt_12scenes_apt2_luke", "pgt_12scenes_office1_gates362", "pgt_12scenes_office1_gates381", "pgt_12scenes_office1_lounge", "pgt_12scenes_office1_manolis", "pgt_12scenes_office2_5a", "pgt_12scenes_office2_5b"]
_logger = logging.getLogger(__name__)
def _strtobool(x):
return bool(strtobool(x))
def p2f(x):
return float(x.strip('\n').strip('%')) / 100
def parse_line_from_file(log_file, pct_dict):
n=10
with open(log_file, 'r') as file:
# read last n=10 lines, start from e.g. INFO:__main__: 5m/10deg: 97.22%
Lines = file.readlines()[-n:]
# start
for i in range(n-3):
this_line = Lines[i].split(" ") # ['INFO:__main__:\t5m/10deg:', '100.00%\n']
this_line_0_front, this_line_0_rear = this_line[0].split('\t') # ['INFO:__main__:', '5m/10deg:']
if this_line_0_rear == '5m/10deg:':
pct_dict['pct500_10'] += p2f(this_line[1]) # add float number representing %, e.g. 97% -> 0.97
if this_line_0_rear == '0.5m/5deg:':
pct_dict['pct50_5'] += p2f(this_line[1])
if this_line_0_rear == '0.25m/2deg:':
pct_dict['pct25_2'] += p2f(this_line[1])
if this_line_0_rear == '10cm/5deg:':
pct_dict['pct10_5'] += p2f(this_line[1]) # add float number representing %, e.g. 97% -> 0.97
if this_line_0_rear == '5cm/5deg:':
pct_dict['pct5'] += p2f(this_line[1])
if this_line_0_rear == '2cm/2deg:':
pct_dict['pct2'] += p2f(this_line[1])
if this_line_0_rear == '1cm/1deg:':
pct_dict['pct1'] += p2f(this_line[1])
# Split the median and mean error lines.
def extract_r_t(line):
# Line looks like: "INFO:__main__:Median Error: 0.00 deg, 0.00 cm"
r, t = line.split(":")[-1].strip().split(",")
return float(r.strip().split(" ")[0]), float(t.strip().split(" ")[0])
# Extract median.
median_r, median_t = extract_r_t(Lines[-3])
pct_dict['median_r'] += median_r
pct_dict['median_t'] += median_t
mean_r, mean_t = extract_r_t(Lines[-2])
pct_dict['mean_r'] += mean_r
pct_dict['mean_t'] += mean_t
return pct_dict
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(
description='Compute metrics for a pre-existing poses file.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('dataset', type=str, help='name of the dataset e.g. Wayspots, 7Scenes')
parser.add_argument('model_path', type=str, help='path of model')
parser.add_argument('datatype', type=str, help='choices: train, val, test')
parser.add_argument('--finetune', type=_strtobool, default=False,
help='finetuned model using pretrained marepo')
args = parser.parse_args()
if args.dataset=='Wayspots' and args.datatype=='test':
scene_dict = Wayspots
elif args.dataset=='Wayspots' and args.datatype=='val':
scene_dict = Mapfree_val
elif args.dataset=='7Scenes':
scene_dict = Seven_Scenes
elif args.dataset=='7Scenes_pgt':
scene_dict = Seven_Scenes_Pgt
elif args.dataset=='12Scenes':
scene_dict = Twelve_Scenes
elif args.dataset == '12Scenes_pgt':
scene_dict = Twelve_Scenes_Pgt
else:
print("unrecognized dataset, please check")
NotImplementedError
sys.exit()
pct_dict = {
'pct500_10': 0,
'pct50_5': 0,
'pct25_2': 0,
'pct10_5': 0,
'pct5': 0,
'pct2': 0,
'pct1': 0,
'median_r': 0,
'median_t': 0,
'mean_r': 0,
'mean_t': 0,
}
for scene in scene_dict:
if args.finetune:
log_file = osp.join(args.model_path, 'log_Finetune_Marepo_' + scene + '_' + args.datatype + '.txt')
else:
log_file=osp.join(args.model_path, 'log_Marepo_'+scene+'_'+args.datatype+'.txt')
print(log_file)
pct_dict = parse_line_from_file(log_file, pct_dict)
# breakpoint()
print(f"{args.dataset} {args.datatype} dataset mean accuracy:")
print(f"5m/10deg: {pct_dict['pct500_10']*100/len(scene_dict):.2f}%" )
print(f"0.5m/5deg: {pct_dict['pct50_5'] * 100 / len(scene_dict):.2f}%")
print(f"0.25m/2deg: {pct_dict['pct25_2'] * 100 / len(scene_dict):.2f}%")
print(f"10cm/5deg: {pct_dict['pct10_5'] * 100 / len(scene_dict):.2f}%")
print(f"5cm/5deg: {pct_dict['pct5'] * 100 / len(scene_dict):.2f}%")
print(f"2cm/2deg: {pct_dict['pct2'] * 100 / len(scene_dict):.2f}%")
print(f"1cm/1deg: {pct_dict['pct1'] * 100 / len(scene_dict):.2f}%")
print(f"Avg. Median Error: {pct_dict['median_r']/len(scene_dict):.2f} deg, {pct_dict['median_t']/len(scene_dict):.2f} cm")
print(f"Avg. Mean Error: {pct_dict['mean_r']/len(scene_dict):.2f} deg, {pct_dict['mean_t']/len(scene_dict):.2f} cm")