-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_marepo.py
executable file
·267 lines (222 loc) · 11.6 KB
/
test_marepo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#!/usr/bin/env python3
# Copyright © Niantic, Inc. 2024.
import argparse
import logging
import time
from distutils.util import strtobool
from pathlib import Path
import json
import random
import numpy as np
import torch
from torch.cuda.amp import autocast
from torch.utils.data import DataLoader
from marepo.marepo_network import Regressor
from dataset import CamLocDataset
from test_marepo_util import batch_frame_test_time_error_computation
_logger = logging.getLogger(__name__)
def _strtobool(x):
return bool(strtobool(x))
if __name__ == '__main__':
# Setup logging.
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(
description='Test a trained network on a specific scene.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('scene', type=Path,
help='path to a scene in the dataset folder, e.g. "datasets/Cambridge_GreatCourt"')
parser.add_argument('network', type=Path, help='path to marepo network (just the transformer weights)')
parser.add_argument('--dataset_path', type=Path,
default="",
help='path to the dataset folder, e.g. "~/storage/map_free_training_scenes/". '
'When this config is set, it means we are training with every scenes in the dataset')
parser.add_argument('--encoder_path', type=Path, default=Path(__file__).parent / "ace_encoder_pretrained.pt",
help='file containing pre-trained encoder weights')
parser.add_argument('--head_network_path', type=Path,
default=Path(__file__).parent / "logs/wayspots_bears/wayspots_bears.pt",
help='file containing pre-trained ACE head weights')
parser.add_argument('--dataset_head_network_path', type=Path,
default="",
help='path to the pre-trained ACE head weights of entire dataset, e.g. "logs/mapfree/". '
'When this config is set, it means we are training with every scenes in the dataset')
parser.add_argument('--preprocessing', type=_strtobool, default=False,
help='use pretrained ACE networks to generate scene coordinate maps (Not used in testing)')
parser.add_argument('--session', '-sid', default='',
help='custom session name appended to output files, '
'useful to separate different runs of a script')
parser.add_argument('--image_resolution', type=int, default=480, help='base image resolution')
parser.add_argument('--batch_size', type=int, default=1,
help='number of train set batch size')
parser.add_argument('--val_batch_size', type=int, default=1,
help='number of val set batch size')
parser.add_argument('--test_batch_size', type=int, default=64,
help='number of test set batch size')
parser.add_argument('--use_half', type=_strtobool, default=False,
help='train with half precision')
parser.add_argument('--trainskip', type=int, default=1,
help='uniformly subsample train set by 1/trainskip')
parser.add_argument('--testskip', type=int, default=1,
help='uniformly subsample val/test set by 1/testskip')
parser.add_argument('--transformer_json', type=str, default="../transformer/config/default.json",
help='file contain transformer config')
parser.add_argument('--load_scheme2_sc_map', type=_strtobool, default=False,
help='use saved SC maps (subtract mean) and GT pose (subtract mean)'
'instead of use original SC map and GT pose')
parser.add_argument('--datatype', type=str, default="test", choices=['train', 'val', 'test'],
help='dataset type: train means mapping data, test means query data')
parser.add_argument('--center_crop', type=_strtobool, default=False,
help='Flag for datasetloader indicating images need center crop to make them proportional in size to MapFree data')
parser.add_argument('--load_rgb', type=_strtobool, default=False,
help='Use 3 rgb channel images instead of using 1 channel gray image.')
parser.add_argument('--data_split', type=str, default='test',
choices=('train', 'test'),help='data split')
# noise jitter experiment to SC Map
parser.add_argument('--noise_ratio', type=float, default=0.0,
help='noise ratio added to the sc map, in percentage 0-1')
parser.add_argument('--noise_level', type=float, default=0.0,
help='noise level added to the sc map, in cm, i.e.0.1m, 0.5m')
opt = parser.parse_args()
device = torch.device("cuda")
scene_path = Path(opt.scene)
encoder_path = Path(opt.encoder_path)
head_network_path = Path(opt.head_network_path)
transformer_path = Path(opt.network)
session = opt.session
num_data_loader_workers=6
torch.manual_seed(2089)
np.random.seed(2089)
random.seed(2089)
test_batch_size = opt.test_batch_size
# print("warning: change it back to test after debugging!")
# Create test dataset.
test_dataset = CamLocDataset(
root_dir=opt.scene / "test",
mode=0, # Default for marepo, we don't need scene coordinates/RGB-D.
image_height=opt.image_resolution,
center_crop=opt.center_crop,
load_rgb=opt.load_rgb
)
test_dl = DataLoader(
test_dataset,
shuffle=False,
batch_size=test_batch_size,
num_workers=num_data_loader_workers)
_logger.info(f'Test images found: {len(test_dl.dataset)}')
# Setup dataloader. Batch size 1 by default.
testset_loader = DataLoader(test_dataset, shuffle=False, num_workers=6)
# Load network weights.
encoder_state_dict = torch.load(encoder_path, map_location="cpu")
_logger.info(f"Loaded encoder from: {encoder_path}")
head_state_dict = torch.load(head_network_path, map_location="cpu")
_logger.info(f"Loaded head weights from: {head_network_path}")
transformer_state_dict = torch.load(transformer_path, map_location="cpu")
_logger.info(f"Loaded transformer weights from: {transformer_path}")
# some configuration for the transformer
f = open(opt.transformer_json)
config = json.load(f)
f.close()
config["transformer_pose_mean"] = torch.Tensor([0., 0., 0.]) # placeholder, load actual numbers later
_logger.info(f"Loaded transformer config from: {opt.transformer_json}")
default_img_H = test_dl.dataset.default_img_H # we get default image H and W for position encoding
default_img_W = test_dl.dataset.default_img_W
config["default_img_HW"] = [default_img_H, default_img_W]
# Create regressor.
network = Regressor.load_marepo_from_state_dict(encoder_state_dict, head_state_dict, transformer_state_dict, config)
network.eval()
# if network is trained by scheme 2, we should load the Ace Head mean stats
print("Warning: we load mean again because we need to shift SC mean at test")
if opt.load_scheme2_sc_map:
network.transformer_head.transformer_pose_mean = network.heads.mean
# Setup for evaluation.
network = network.to(device)
network.eval()
# Save the outputs in the same folder as the network being evaluated.
output_dir = transformer_path.parent
scene_name = scene_path.name
# This will contain aggregate scene stats (median translation/rotation errors, and avg processing time per frame).
test_log_file = output_dir / f'test_{scene_name}_{opt.session}.txt'
_logger.info(f"Saving test aggregate statistics to: {test_log_file}")
# This will contain each frame's pose (stored as quaternion + translation) and errors.
pose_log_file = output_dir / f'poses_{scene_name}_{opt.session}.txt'
_logger.info(f"Saving per-frame poses and errors to: {pose_log_file}")
# Setup output files.
test_log = open(test_log_file, 'w', 1)
pose_log = open(pose_log_file, 'w', 1)
# Metrics of interest.
avg_batch_time = 0
num_batches = 0
# Keep track of rotation and translation errors for calculation of the median error.
rErrs = []
tErrs = []
# Percentage of frames predicted within certain thresholds from their GT pose.
pct10_5 = 0
pct5 = 0
pct2 = 0
pct1 = 0
# more loose thresholds
pct500_10 = 0
pct50_5 = 0
pct25_2 = 0
# Testing loop.
testing_start_time = time.time()
cur_batch_frame_index = 0
with torch.no_grad():
for batch in test_dl:
image_B1HW, image_mask_B1HW = batch['image'], batch['image_mask']
gt_pose_B44, gt_pose_inv_B44 = batch['pose'], batch['pose_inv']
intrinsics_B33, intrinsics_inv_B33 = batch['intrinsics'], batch['intrinsics_inv']
scene_coords_B13HW = batch['scene_coords']
sc_mask = batch['sc_mask'] if 'sc_mask' in batch.keys() else None
filenames = batch['rgb_files']
batch_start_time = time.time()
batch_size = image_B1HW.shape[0]
image_B1HW = image_B1HW.to(device, non_blocking=True)
# Predict scene coordinates.
with autocast(enabled=True):
features = network.get_features(image_B1HW)
sc = network.get_scene_coordinates(features).float() # [N,3,H,W]
# Predict pose
with autocast(enabled=False):
predict_pose = network.get_pose(sc, intrinsics_B33.to(device))
predict_pose = predict_pose.float().cpu()
rErrs, tErrs, avg_batch_time, num_batches, \
pct10_5, pct5, pct2, pct1, \
pct500_10, pct50_5, pct25_2 \
= batch_frame_test_time_error_computation(predict_pose, gt_pose_B44, intrinsics_B33, filenames, rErrs, tErrs,
pct10_5, pct5, pct2, pct1,
pct500_10, pct50_5, pct25_2,
pose_log, avg_batch_time, batch_start_time, num_batches, _logger)
total_frames = len(rErrs)
assert total_frames == len(test_dl.dataset.rgb_files)
# Compute median errors.
median_rErr = np.median(rErrs)
median_tErr = np.median(tErrs)
mean_rErr = np.mean(rErrs)
mean_tErr = np.mean(tErrs)
# Compute average time.
avg_time = avg_batch_time / total_frames
# Compute final metrics.
pct10_5 = pct10_5 / total_frames * 100
pct5 = pct5 / total_frames * 100
pct2 = pct2 / total_frames * 100
pct1 = pct1 / total_frames * 100
pct500_10 = pct500_10 / total_frames * 100
pct50_5 = pct50_5 / total_frames * 100
pct25_2 = pct25_2 / total_frames * 100
_logger.info("===================================================")
_logger.info("Test complete.")
_logger.info('Accuracy:')
_logger.info(f'\t5m/10deg: {pct500_10:.2f}%')
_logger.info(f'\t0.5m/5deg: {pct50_5:.2f}%')
_logger.info(f'\t0.25m/2deg: {pct25_2:.2f}%')
_logger.info(f'\t10cm/5deg: {pct10_5:.2f}%')
_logger.info(f'\t5cm/5deg: {pct5:.2f}%')
_logger.info(f'\t2cm/2deg: {pct2:.2f}%')
_logger.info(f'\t1cm/1deg: {pct1:.2f}%')
_logger.info(f"Median Error: {median_rErr:.2f} deg, {median_tErr:.2f} cm")
_logger.info(f"Mean Error: {mean_rErr:.2f} deg, {mean_tErr:.2f} cm")
_logger.info(f"Avg. processing time: {avg_time * 1000:4.2f} ms")
# Write to the test log file as well.
test_log.write(f"{median_rErr} {median_tErr} {avg_time}\n")
test_log.close()
pose_log.close()