forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.js
44 lines (41 loc) · 1.36 KB
/
model.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const tf = require('@tensorflow/tfjs-node');
/**
* Builds and returns Multi Layer Perceptron Regression Model.
*
* @param {number} inputShape The input shape of the model.
* @returns {tf.Sequential} The multi layer perceptron regression mode l.
*/
function createModel(inputShape) {
const model = tf.sequential();
model.add(tf.layers.dense({
inputShape: inputShape,
activation: 'sigmoid',
units: 50,
}));
model.add(tf.layers.dense({
activation: 'sigmoid',
units: 50,
}));
model.add(tf.layers.dense({
units: 1,
}));
model.compile({optimizer: tf.train.sgd(0.01), loss: 'meanSquaredError'});
return model;
}
module.exports = createModel;