forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
278 lines (261 loc) · 9.07 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
const canvas = document.getElementById('canvas');
const order = 3;
// Convert world coordinates to canvas ones.
function world2canvas(canvas, x, y) {
return [x + canvas.width / 2, -y + canvas.height / 2];
}
// Draw x and y axes in the canvas.
function drawAxes(canvas) {
const ctx = canvas.getContext('2d');
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.beginPath();
const leftCoord = world2canvas(canvas, -canvas.width / 2, 0);
const rightCoord = world2canvas(canvas, canvas.width / 2, 0);
ctx.moveTo(leftCoord[0], leftCoord[1]);
ctx.lineTo(rightCoord[0], rightCoord[1]);
ctx.stroke();
const topCoord = world2canvas(canvas, 0, canvas.height / 2);
const bottomCoord = world2canvas(canvas, 0, -canvas.height / 2);
ctx.moveTo(topCoord[0], topCoord[1]);
ctx.lineTo(bottomCoord[0], bottomCoord[1]);
ctx.stroke();
}
// Draw x and y data in the canvas.
//
// Also draws the x and y axes.
//
// Args:
// canvas: The canvas to draw the data in.
// xyData: An Array of [x, y] Arrays.
function drawXYData(canvas, xyData) {
drawAxes(canvas);
const ctx = canvas.getContext('2d');
for (let i = 0; i < xyData.length; ++i) {
ctx.beginPath();
const x = xyData[i][0];
const y = xyData[i][1];
const canvasCoord = world2canvas(canvas, x, y);
ctx.arc(canvasCoord[0], canvasCoord[1], 4, 0, Math.PI * 2, true);
ctx.stroke();
}
}
// Calculate the arithmetic mean of a vector.
//
// Args:
// vector: The vector represented as an Array of Numbers.
//
// Returns:
// The arithmetic mean.
function mean(vector) {
let sum = 0;
for (const x of vector) {
sum += x;
}
return sum / vector.length;
}
// Calculate the standard deviation of a vector.
//
// Args:
// vector: The vector represented as an Array of Numbers.
//
// Returns:
// The standard deviation.
function stddev(vector) {
let squareSum = 0;
const vectorMean = mean(vector);
for (const x of vector) {
squareSum += (x - vectorMean) * (x - vectorMean);
}
return Math.sqrt(squareSum / (vector.length - 1));
}
// Normalize a vector by its mean and standard deviation.
function normalizeVector(vector, vectorMean, vectorStddev) {
return vector.map(x => (x - vectorMean) / vectorStddev);
}
// Convert x-y data to normalized Tensors.
//
// Args:
// xyData: An Array of [x, y] Number Arrays.
// order: The order of the polynomial to generate data for. Assumed to be
// a non-negative integer.
//
// Returns: An array consisting of the following
// xPowerMeans: Arithmetic means of the powers of x, from order `1` to
// order `order`
// xPowerStddevs: Standard deviations of the powers of x.
// Normalized powers of x: an Tensor2D of shape [batchSize, order + 1].
// The first column is all ones; the following columns are powers of x
// from order `1` to `order`.
// yMean: Arithmetic mean of y.
// yStddev: Standard deviation of y.
// Normalized powers of y: an Tensor2D of shape [batchSize, 1].
function toNormalizedTensors(xyData, order) {
const batchSize = xyData.length;
const data = [];
const xData = xyData.map(xy => xy[0]);
const yData = xyData.map(xy => xy[1]);
const yMean = mean(yData);
const yStddev = stddev(yData);
const yNormalized = normalizeVector(yData, yMean, yStddev);
const normalizedXPowers = [];
const xPowerMeans = [];
const xPowerStddevs = [];
for (let i = 0; i < order; ++i) {
const xPower = xData.map(x => Math.pow(x, i + 1));
const xPowerMean = mean(xPower);
xPowerMeans.push(xPowerMean);
const xPowerStddev = stddev(xPower);
xPowerStddevs.push(xPowerStddev);
const normalizedXPower = normalizeVector(xPower, xPowerMean, xPowerStddev);
normalizedXPowers.push(normalizedXPower);
}
const xArrayData = [];
for (let i = 0; i < xData.length; ++i) {
for (let j = 0; j < order + 1; ++j) {
if (j === 0) {
xArrayData.push(1);
} else {
xArrayData.push(normalizedXPowers[j - 1][i]);
}
}
}
return [
xPowerMeans, xPowerStddevs, tf.tensor2d(xArrayData, [batchSize, order + 1]),
yMean, yStddev, tf.tensor2d(yNormalized, [batchSize, 1])
];
}
// Fit a model for polynomial regression.
//
// Args:
// xyData: An Array of [x, y] Number Arrays.
// epochs: How many epochs to train for.
// learningRate: Learning rate.
//
// Returns: An Array consiting of the following:
// The trained keras Model instance.
// xPowerMeans: Arithmetic means of the powers of x, from order `1` to
// order `order`
// xPowerStddevs: Standard deviations of the powers of x.
// yMean: Arithmetic mean of y.
// yStddev: Standard deviation of y.
async function fitModel(xyData, epochs, learningRate) {
const batchSize = xyData.length;
const outputs = toNormalizedTensors(xyData, order);
const xPowerMeans = outputs[0];
const xPowerStddevs = outputs[1];
const xData = outputs[2];
const yMean = outputs[3];
const yStddev = outputs[4];
const yData = outputs[5];
const input = tf.input({shape: [order + 1]});
const linearLayer =
tf.layers.dense({units: 1, kernelInitializer: 'Zeros', useBias: false});
const output = linearLayer.apply(input);
const model = tf.model({inputs: input, outputs: output});
const sgd = tf.train.sgd(learningRate);
model.compile({optimizer: sgd, loss: 'meanSquaredError'});
await model.fit(xData, yData, {
batchSize: batchSize,
epochs: epochs,
});
console.log(
'Model weights (normalized):',
model.trainableWeights[0].read().dataSync());
return [model, xPowerMeans, xPowerStddevs, yMean, yStddev];
}
// Render the predictions made by the model.
function renderModelPredictions(
canvas, order, model, xPowerMeans, xPowerStddevs, yMean, yStddev) {
const ctx = canvas.getContext('2d');
const width = canvas.width;
let x = -0.5 * width;
const xStep = 0.02 * width;
const xs = [];
const xPowers = [];
let n = 0;
while (x < 0.5 * width) {
xs.push(x);
let d = 1;
for (let j = 0; j < order + 1; ++j) {
xPowers.push(
j === 0 ? d : ((d - xPowerMeans[j - 1]) / xPowerStddevs[j - 1]));
d *= x;
}
x += xStep;
n++;
}
const predictOut = model.predict(tf.tensor2d(xPowers, [n, order + 1]));
const normalizedYs = predictOut.dataSync();
ctx.beginPath();
let canvasXY = world2canvas(canvas, xs[0], normalizedYs[0] * yStddev + yMean);
ctx.moveTo(canvasXY[0], canvasXY[1]);
for (let i = 1; i < n; ++i) {
canvasXY = world2canvas(canvas, xs[i], normalizedYs[i] * yStddev + yMean);
ctx.lineTo(canvasXY[0], canvasXY[1]);
ctx.stroke();
}
}
// Generate x-y data based on the size of the canvas.
function generateXYData(canvas, coeffs) {
const data = [];
for (let x = -canvas.width / 2; x < canvas.width / 2;
x += canvas.width / 25) {
data.push([
x, coeffs[0] * x * x * x + coeffs[1] * x * x + coeffs[2] * x + coeffs[3]
]);
}
return data;
}
// Fit a model and render the data and predictions.
async function fitAndRender() {
const epochs = +epochsElement.value;
const learningRate = +learningRateElement.value;
if (!isFinite(epochs) || !isFinite(learningRate)) {
return;
}
const coeffs = [
+cubicCoeffElement.value, +quadCoeffElement.value,
+linearCoeffElement.value, +constCoeffElement.value
];
console.log('True coefficients: ' + JSON.stringify(coeffs));
let xyData = generateXYData(canvas, coeffs);
drawXYData(canvas, xyData);
const fitOutputs = await fitModel(xyData, epochs, learningRate);
const model = fitOutputs[0];
const xPowerMeans = fitOutputs[1];
const xPowerStddevs = fitOutputs[2];
const yMean = fitOutputs[3];
const yStddev = fitOutputs[4];
await renderModelPredictions(
canvas, order, model, xPowerMeans, xPowerStddevs, yMean, yStddev);
}
const cubicCoeffElement = document.getElementById('cubic-coeff');
const quadCoeffElement = document.getElementById('quad-coeff');
const linearCoeffElement = document.getElementById('linear-coeff');
const constCoeffElement = document.getElementById('const-coeff');
const epochsElement = document.getElementById('epochs');
const learningRateElement = document.getElementById('learning-rate');
cubicCoeffElement.addEventListener('keyup', fitAndRender);
quadCoeffElement.addEventListener('keyup', fitAndRender);
linearCoeffElement.addEventListener('keyup', fitAndRender);
constCoeffElement.addEventListener('keyup', fitAndRender);
epochsElement.addEventListener('keyup', fitAndRender);
learningRateElement.addEventListener('keyup', fitAndRender);
fitAndRender();