forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
183 lines (159 loc) · 6.55 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* This file runs inference on a pretrained simple object detection model.
*
* The model is defined and trained with `train.js`.
* The data used for model training and model inference are synthesized
* programmatically. See `synthetic_images.js` for details.
*/
import * as tf from '@tensorflow/tfjs';
import {ObjectDetectionImageSynthesizer} from './synthetic_images';
const canvas = document.getElementById('data-canvas');
const status = document.getElementById('status');
const testModel = document.getElementById('test');
const loadHostedModel = document.getElementById('load-hosted-model');
const inferenceTimeMs = document.getElementById('inference-time-ms');
const trueObjectClass = document.getElementById('true-object-class');
const predictedObjectClass = document.getElementById('predicted-object-class');
const TRUE_BOUNDING_BOX_LINE_WIDTH = 2;
const TRUE_BOUNDING_BOX_STYLE = 'rgb(255,0,0)';
const PREDICT_BOUNDING_BOX_LINE_WIDTH = 2;
const PREDICT_BOUNDING_BOX_STYLE = 'rgb(0,0,255)';
function drawBoundingBoxes(canvas, trueBoundingBox, predictBoundingBox) {
tf.util.assert(
trueBoundingBox != null && trueBoundingBox.length === 4,
`Expected boundingBoxArray to have length 4, ` +
`but got ${trueBoundingBox} instead`);
tf.util.assert(
predictBoundingBox != null && predictBoundingBox.length === 4,
`Expected boundingBoxArray to have length 4, ` +
`but got ${trueBoundingBox} instead`);
let left = trueBoundingBox[0];
let right = trueBoundingBox[1];
let top = trueBoundingBox[2];
let bottom = trueBoundingBox[3];
const ctx = canvas.getContext('2d');
ctx.beginPath();
ctx.strokeStyle = TRUE_BOUNDING_BOX_STYLE;
ctx.lineWidth = TRUE_BOUNDING_BOX_LINE_WIDTH;
ctx.moveTo(left, top);
ctx.lineTo(right, top);
ctx.lineTo(right, bottom);
ctx.lineTo(left, bottom);
ctx.lineTo(left, top);
ctx.stroke();
ctx.font = '15px Arial';
ctx.fillStyle = TRUE_BOUNDING_BOX_STYLE;
ctx.fillText('true', left, top);
left = predictBoundingBox[0];
right = predictBoundingBox[1];
top = predictBoundingBox[2];
bottom = predictBoundingBox[3];
ctx.beginPath();
ctx.strokeStyle = PREDICT_BOUNDING_BOX_STYLE;
ctx.lineWidth = PREDICT_BOUNDING_BOX_LINE_WIDTH;
ctx.moveTo(left, top);
ctx.lineTo(right, top);
ctx.lineTo(right, bottom);
ctx.lineTo(left, bottom);
ctx.lineTo(left, top);
ctx.stroke();
ctx.font = '15px Arial';
ctx.fillStyle = PREDICT_BOUNDING_BOX_STYLE;
ctx.fillText('predicted', left, bottom);
}
/**
* Synthesize an input image, run inference on it and visualize the results.
*
* @param {tf.Model} model Model to be used for inference.
*/
async function runAndVisualizeInference(model) {
// Synthesize an input image and show it in the canvas.
const synth = new ObjectDetectionImageSynthesizer(canvas, tf);
const numExamples = 1;
const numCircles = 10;
const numLineSegments = 10;
const {images, targets} = await synth.generateExampleBatch(
numExamples, numCircles, numLineSegments);
const t0 = tf.util.now();
// Runs inference with the model.
const modelOut = await model.predict(images).data();
inferenceTimeMs.textContent = `${(tf.util.now() - t0).toFixed(1)}`;
// Visualize the true and predicted bounding boxes.
const targetsArray = Array.from(await targets.data());
const boundingBoxArray = targetsArray.slice(1);
drawBoundingBoxes(canvas, boundingBoxArray, modelOut.slice(1));
// Display the true and predict object classes.
const trueClassName = targetsArray[0] > 0 ? 'rectangle' : 'triangle';
trueObjectClass.textContent = trueClassName;
// The model predicts a number to indicate the predicted class
// of the object. It is trained to predict 0 for triangle and
// 224 (canvas.width) for rectangel. This is how the model combines
// the class loss with the bounding-box loss to form a single loss
// value. Therefore, at inference time, we threshold the number
// by half of 224 (canvas.width).
const shapeClassificationThreshold = canvas.width / 2;
const predictClassName =
(modelOut[0] > shapeClassificationThreshold) ? 'rectangle' : 'triangle';
predictedObjectClass.textContent = predictClassName;
if (predictClassName === trueClassName) {
predictedObjectClass.classList.remove('shape-class-wrong');
predictedObjectClass.classList.add('shape-class-correct');
} else {
predictedObjectClass.classList.remove('shape-class-correct');
predictedObjectClass.classList.add('shape-class-wrong');
}
// Tensor memory cleanup.
tf.dispose([images, targets]);
}
async function init() {
const LOCAL_MODEL_PATH = 'object_detection_model/model.json';
const HOSTED_MODEL_PATH =
'https://storage.googleapis.com/tfjs-examples/simple-object-detection/dist/object_detection_model/model.json';
// Attempt to load locally-saved model. If it fails, activate the
// "Load hosted model" button.
let model;
try {
model = await tf.loadLayersModel(LOCAL_MODEL_PATH);
model.summary();
testModel.disabled = false;
status.textContent = 'Loaded locally-saved model! Now click "Test Model".';
runAndVisualizeInference(model);
} catch (err) {
status.textContent = 'Failed to load locally-saved model. ' +
'Please click "Load Hosted Model"';
loadHostedModel.disabled = false;
}
loadHostedModel.addEventListener('click', async () => {
try {
status.textContent = `Loading hosted model from ${HOSTED_MODEL_PATH} ...`;
model = await tf.loadLayersModel(HOSTED_MODEL_PATH);
model.summary();
loadHostedModel.disabled = true;
testModel.disabled = false;
status.textContent =
`Loaded hosted model successfully. Now click "Test Model".`;
runAndVisualizeInference(model);
} catch (err) {
status.textContent =
`Failed to load hosted model from ${HOSTED_MODEL_PATH}`;
}
});
testModel.addEventListener('click', () => runAndVisualizeInference(model));
}
init();