-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathnew.py
290 lines (248 loc) · 9.16 KB
/
new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import csv
import copy
import math
import time
import random
import numpy as np
from sklearn import metrics
from sklearn import datasets
from numpy import genfromtxt
import numpy.random as nprand
import matplotlib.pyplot as plt
from profilehooks import profile
from sklearn.cluster import KMeans
from mpl_toolkits.mplot3d import Axes3D
from sklearn.metrics import pairwise_distances
def reject_outliers(data, m = 2.):
d = np.abs(data - np.median(data))
len(data)
mdev = np.median(d)
s = d/mdev if mdev else 0.
return data[s<m]
def populate_essentials(fname, hyper_to_d):
rows = genfromtxt(fname, delimiter=',')
n = len(rows)
hypercube_dim_float = math.log(n,2)
#print "hypercube_dim_float " + str(hypercube_dim_float)
hypercube_dim = math.ceil(hypercube_dim_float)
#print "hypercube_dim " + str(hypercube_dim)
n = 0
for row in rows:
row = row[:-1]
hyper_to_d[n] = np.array(row)
n = n+1
return (hypercube_dim, n)
# particles is the indices of the current particles
def initialize(num_clusters, hyper_to_d, particles_h_to_d, particles, hypercube_dim, velocity):
for i in range(num_clusters):
x = random.choice(hyper_to_d.keys())
particles_h_to_d[x] = hyper_to_d[x]
particles[i] = x
x = hypercube_dim
a = random.randrange(0,x)
velocity[i] = int(a)
# calculate the global fitness function
def global_fitness(particles, hyper_to_d):
arr = []
for i in xrange(len(particles)):
for j in xrange(i, len(particles)):
arr.append((hyper_to_d[particles[i]]-hyper_to_d[particles[j]])**2)
return np.sum(arr)
# calculate the local fitness function
def local_fitness(p, particles_h_to_d):
#p is an integer ie. index of the required particle
key = particles_h_to_d[p]
arr = []
for p1 in particles_h_to_d.keys():
arr.append((particles_h_to_d[p1] - key)**2)
return np.sum(arr)
def move(particle, vel, hyper_to_d, particles_h_to_d, dim):
'''d = np.array([particle])
bin = (((d[:,None] & (1 << np.arange(dim)))) > 0).astype(int)
ones = np.where(bin>0)[1]'''
particle = bin(particle)[2:]
diff1 = (int)(dim - len(particle))
lis = ''
for i in range(diff1):
lis+='0'
lis+=particle
particle = lis
if vel < 0:
vel = -vel
diff = nprand.randint(dim, size = vel)
out = particle
for i in diff:
if out[i] == '0':
out = out[:i] + '1' + out[i+1:]
else:
out = out[:i] + '0' + out[i+1:]
num = int(out, 2)
ones = np.where
while num not in hyper_to_d and num not in particles_h_to_d:
if vel < 0:
vel = -vel
diff = nprand.randint(dim, size = vel)
out = particle
for i in diff:
if out[i] == '0':
out = out[:i] + '1' + out[i+1:]
else:
out = out[:i] + '0' + out[i+1:]
num = int(out,2)
return int(out, 2)
def edit_distance(p1, p2, hypercube_dim):
#arr is an array
pos1 = bin(p1)[2:]
pos2 = bin(p2)[2:]
dist = abs(len(pos1) - len(pos2))
for i in range(min(len(pos1), len(pos2))):
if pos1[i] != pos2[i]:
dist+=1
return dist
def pso(iterations, num_clusters, num_particles, hyper_to_d, particles_h_to_d, hypercube_dim, particles, velocity):
i =0
gbest = np.zeros(num_clusters, dtype = "int")
pbest = np.zeros(num_clusters, dtype = "int")
np.copyto(gbest, particles)
np.copyto(pbest, particles)
best_value = global_fitness(gbest, hyper_to_d)
best_local_value = []
bests = []
for j in range(num_clusters):
best_local_value.append(local_fitness(particles[j] , particles_h_to_d))
while i < iterations:
# if i%10==0 and i > 0:
# pass
# print "gbest"
# print gbest
# print "pbest"
# print pbest
# print "best = " + str(best_value)
for j in range(num_clusters):
# print particles_h_to_d
# print particles
# print j
particles_h_to_d.pop(particles[j], None)
#print "particles[j] = " + str(particles[j])
val = hyper_to_d[particles[j]]
velocity[j] = int(velocity[j] + nprand.uniform(-1,1) * edit_distance(pbest[j], particles[j], hypercube_dim) + nprand.uniform(-1,1) * edit_distance(gbest[j], particles[j], hypercube_dim))
particles[j] = move(particles[j] , velocity[j], hyper_to_d, particles_h_to_d,hypercube_dim)
particles_h_to_d[particles[j]] = hyper_to_d[particles[j]]
gfit = global_fitness(particles, hyper_to_d)
if(gfit > best_value):
print "improved from " + str(best_value) + " to " + str(global_fitness(particles, hyper_to_d))
best_value = gfit
np.copyto(gbest, particles)
new = np.zeros(num_clusters, dtype = "int")
np.copyto(new, gbest)
bests.append(new)
pfit = local_fitness(particles[j], particles_h_to_d)
if pfit > best_local_value[j]:
#print "improved pbest"
best_local_value[j] = pfit
pbest[j] = particles[j]
i = i+1
return (bests, pbest, best_value)
def driver(fname, cluster, iterations):
num_clusters = cluster
hyper_to_d = {}
particles_h_to_d = {}
particles = np.zeros(num_clusters, dtype = 'int')
hypercube_dim, num_particles = populate_essentials(fname, hyper_to_d)
k = 0
#print hyper_to_d
velocity = np.zeros(num_clusters, dtype = 'int')
initialize(num_clusters, hyper_to_d, particles_h_to_d, particles, hypercube_dim, velocity)
best_value = global_fitness(particles, particles_h_to_d)
#print "particles "+ particles[0]
#print velocity[0]
#print move('11111111', velocity[0], num_particles)
#print particles
start = time.time()
(bests, pbest, best_value) = pso(iterations, num_clusters, num_particles, hyper_to_d, particles_h_to_d, hypercube_dim, particles, velocity)
end = time.time()
ti = end-start
print "time to initialize = "
print ti
#print str(sum(best_local_value)/2) + " local value"
f = open(fname)
f.readline() # skip the header
X = np.genfromtxt(f, delimiter = ',')
y = X[:,-1]
y = y.astype(np.int)
#print max(y)
X = np.delete(X, -1, 1)
# iris = datasets.load_iris()
# X = iris.data
# y = iris.target
# print y
estimators = {'kmeans++': KMeans(n_clusters=cluster, n_jobs = -1),
'k_means_bad_init': KMeans(n_clusters=cluster, n_init=10,
init='random', n_jobs = -1)
}
print bests
# print hyper_to_d[bests[0][0]]
#bests = bests[:10]
for i in range(len(bests)):
lis = []
for j in bests[i]:
lis.append(hyper_to_d[j])
estimators["kmeans_pso_"+str(i)] = KMeans(n_clusters=cluster, n_init = 1, init=np.asarray(lis), n_jobs = -1)
#estimators['k_means_pso_last' + str(i)] = KMeans(n_clusters=9, n_init = 1, init=np.asarray(hyper_to_d[]), n_jobs = -1)
#np.random.seed(5)
fignum = 1
for name, est in estimators.items():
start = time.time()
est.fit(X)
end = time.time()
labels = est.labels_
print str(-est.score(X)) + " score of kmeans " + name
tkm = end-start
print tkm
if name[7:10] == "pso":
ti += tkm
#print "silhouette_score = "+str(metrics.silhouette_score(X, labels, metric='euclidean'))
'''fig = plt.figure(name, figsize=(10,9))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=40, azim=134)
ax.scatter(X[:, 5], X[:, 6], X[:, 10], c=labels.astype(np.float))
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('dim1')
ax.set_ylabel('dim2')
ax.set_zlabel('dim3')
fignum = fignum + 1
# Plot the ground truth
fig = plt.figure("ground truth", figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=40, azim=134)
plt.cla()
for name, label in [('1', 1),
('2', 2),
('3', 3),
('4', 4),
('5', 5),
('6', 6),
('7', 7),
('8', 8),
('9', 9),]:
ax.text3D(X[y == label, 5].mean(),
X[y == label, 6].mean(),
X[y == label, 10].mean(), name,
horizontalalignment='center',
bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))
# Reorder the labels to have colors matching the cluster results
#y = np.choose(y, [1, 2, 3, 4, 5, 6, 7, 8, 9]).astype(np.float)
ax.scatter(X[:, 5], X[:, 6], X[:, 10], c=y)
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('dim1')
ax.set_ylabel('dim2')
ax.set_zlabel('dim3')
plt.show()'''
print "total time taken by pso = " + str(ti)
cluster = 6
iterations = 300
driver("winequality-white.csv", cluster, iterations)