-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfasttrack2s3.py
577 lines (497 loc) · 19.4 KB
/
fasttrack2s3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
#! /usr/bin/env python3
# pseudocode
#
# @TODO: Add additonal option to save out logs to a specific file
# @TODO: Add option to filter by either inclusion or exclusion of the ftq_* columns
# e.g. "{"ftq_complete": "0"}""
# 1. Parse command line arguments
# @TODO: Add levels of log messages of warning/caution for the user to know what's going on with datatypes specifically
# 2. Warn users about the filtered qc_input file for invalid data. Things like:
# - fMRI is selected and there's no fieldmap with it
# (NEVERMIND) @TODO: Add more search filter options using BIDS participants.tsv
# 3. Apply pid, sid, and datatype filters to filter the qc_input file
# @TODO: Add option to only output S3 links and skip producing the filtered qc_input file
# 4. Produce both the filtered qc_input and the s3_output files suffixed with
# filtered_{datatypes}_p-{participant_count}_s-{session_count}, examples like:
# - filtered_all_p-11807_s-19104
# - filtered_all-anat_p-11807_s-19104
# - filtered_all-task-rest_p-9732_s-16324
# - filtered_all-task-rest+only-t1w-normalized_p-7216_s-12024
#
# imports
import argparse
import csv
import logging
import pandas
import re
from copy import deepcopy
from logging import debug, info, warning, error, critical
from pathlib import Path
from utilities import readable, writable
# constants
HERE = Path(__file__).parent
LOG_FORMAT = '%(asctime)s - %(levelname)s - %(message)s'
LOG_LEVELS = ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL']
SESSIONS = [
'ses-baselineYear1Arm1',
'ses-2YearFollowUpYArm1',
'ses-4YearFollowUpYArm1',
'ses-6YearFollowUpYArm1',
'ses-8YearFollowUpYArm1',
'ses-10YearFollowUpYArm1'
]
DATATYPES = {
"all": {
"warning":
"The \"all\" datatype contains everything except QA data.",
"types": [
"_ABCD-DTI_",
"_ABCD-Diffusion-FM_",
"_ABCD-Diffusion-FM-AP_",
"_ABCD-Diffusion-FM-PA_",
"_ABCD-MID-fMRI_",
"_ABCD-nBack-fMRI_",
"_ABCD-rsfMRI_",
"_ABCD-SST-fMRI_",
"_ABCD-fMRI-FM_",
"_ABCD-fMRI-FM-AP_",
"_ABCD-fMRI-FM-PA_",
"_ABCD-T1_",
"_ABCD-T1-NORM_",
"_ABCD-T2_",
"_ABCD-T2-NORM_"
]
},
"all-anat": {
"warning":
"The \"all-anat\" datatype contains both T1 and T2 as-acquired. Siemens scans also include T1 and T2 normalized.",
"types": [
"_ABCD-T1_",
"_ABCD-T1-NORM_",
"_ABCD-T2_",
"_ABCD-T2-NORM_"
]
},
"all-t1w": {
"warning":
"The \"all-t1w\" datatype contains T1 as-acquired. Siemens scans also include T1 normalized.",
"types": [
"_ABCD-T1_",
"_ABCD-T1-NORM_"
],
},
"all-t2w": {
"warning":
"The \"all-t2w\" datatype contains T2 as-acquired. Siemens scans also include T2 normalized.",
"types": [
"_ABCD-T2_",
"_ABCD-T2-NORM_"
],
},
"all-dwi": {
"warning":
"The \"all-dwi\" datatype contains both DWI scans and DWI field maps.",
"types": [
"_ABCD-DTI_",
"_ABCD-Diffusion-FM_",
"_ABCD-Diffusion-FM-AP_",
"_ABCD-Diffusion-FM-PA_"
],
},
"all-fmap": {
"warning":
"The \"all-fmap\" datatype contains both DWI field maps and fMRI field maps.",
"types": [
"_ABCD-Diffusion-FM_",
"_ABCD-Diffusion-FM-AP_",
"_ABCD-Diffusion-FM-PA_",
"_ABCD-fMRI-FM_",
"_ABCD-fMRI-FM-AP_",
"_ABCD-fMRI-FM-PA_"
],
},
"all-func": {
"warning":
"The \"all-func\" datatype contains all task-based and resting-state fMRI as well as all fMRI field maps.",
"types": [
"_ABCD-MID-fMRI_",
"_ABCD-nBack-fMRI_",
"_ABCD-rsfMRI_",
"_ABCD-SST-fMRI_",
"_ABCD-fMRI-FM_",
"_ABCD-fMRI-FM-AP_",
"_ABCD-fMRI-FM-PA_"
],
},
"all-task-MID": {
"warning":
"The \"all-task-MID\" datatype contains all MID task fMRI as well as all fMRI field maps.",
"types": [
"_ABCD-MID-fMRI_",
"_ABCD-fMRI-FM_",
"_ABCD-fMRI-FM-AP_",
"_ABCD-fMRI-FM-PA_"
],
},
"all-task-nback": {
"warning":
"The \"\" datatype contains all nback task fMRI as well as all fMRI field maps.",
"types": [
"_ABCD-nBack-fMRI_",
"_ABCD-fMRI-FM_",
"_ABCD-fMRI-FM-AP_",
"_ABCD-fMRI-FM-PA_"
],
},
"all-task-rest": {
"warning":
"The \"\" datatype contains all resting-state fMRI as well as all fMRI field maps.",
"types": [
"_ABCD-rsfMRI_",
"_ABCD-fMRI-FM_",
"_ABCD-fMRI-FM-AP_",
"_ABCD-fMRI-FM-PA_"
],
},
"all-task-SST": {
"warning":
"The \"\" datatype contains all SST task fMRI as well as all fMRI field maps.",
"types": [
"_ABCD-SST-fMRI_",
"_ABCD-fMRI-FM_",
"_ABCD-fMRI-FM-AP_",
"_ABCD-fMRI-FM-PA_"
],
},
"all-qa": {
"warning":
"The \"all-qa\" datatype contains all QA scans. This behaves the same as the \"only-qa\" datatype.",
"types": [
"QA_"
],
},
"only-dwi": {
"warning":
"The \"only-dwi\" datatype contains only .",
"types": [
"_ABCD-DTI_"
],
},
"only-fmap-dwi": {
"warning":
"The \"only-fmap-dwi\" datatype contains only .",
"types": [
"_ABCD-Diffusion-FM_",
"_ABCD-Diffusion-FM-AP_",
"_ABCD-Diffusion-FM-PA_"
],
},
"only-fmap-func": {
"warning":
"The \"only-fmap-func\" datatype contains only .",
"types": [
"_ABCD-fMRI-FM_",
"_ABCD-fMRI-FM-AP_",
"_ABCD-fMRI-FM-PA_"
],
},
"only-func": {
"warning":
"The \"only-func\" datatype contains only .",
"types": [
"_ABCD-MID-fMRI_",
"_ABCD-nBack-fMRI_",
"_ABCD-rsfMRI_",
"_ABCD-SST-fMRI_"
],
},
"only-task-MID": {
"warning":
"The \"only-task-\" datatype contains only .",
"types": [
"_ABCD-MID-fMRI_"
],
},
"only-task-nback": {
"warning":
"The \"only-task-nback\" datatype contains only .",
"types": [
"_ABCD-nBack-fMRI_"
],
},
"only-task-rest": {
"warning":
"The \"only-task-rest\" datatype contains only .",
"types": [
"_ABCD-rsfMRI_"
],
},
"only-task-SST": {
"warning":
"The \"only-task-SST\" datatype contains only .",
"types": [
"_ABCD-SST-fMRI_"
],
},
"only-t1w-asacquired": {
"warning":
"The \"only-t1w-asacquired\" datatype contains only .",
"types": [
"_ABCD-T1_"
],
},
"only-t1w-normalized": {
"warning":
"The \"only-t1w-normalized\" datatype contains only .",
"types": [
"_ABCD-T1-NORM_"
],
},
"only-t2w-asacquired": {
"warning":
"The \"only-t2w-asacquired\" datatype contains only .",
"types": [
"_ABCD-T2_"
],
},
"only-t2w-normalized": {
"warning":
"The \"only-t2w-normalized\" datatype contains only .",
"types": [
"_ABCD-T2-NORM_"
],
},
"only-qa": {
"warning":
"The \"only-qa\" datatype contains only QA scans. This behaves the same as the \"all-qa\" datatype.",
"types": [
"QA_"
]
},
}
# create help strings for the argparse options
log_levels_str = "\n ".join(LOG_LEVELS)
sessions_str = "\n ".join(SESSIONS)
datatypes_str = "\n ".join( list(DATATYPES.keys()) )
# functions
def cli():
# build parser CLI
parser = argparse.ArgumentParser(
formatter_class=argparse.RawTextHelpFormatter,
description=f"Filter down NDA ABCD fast track series TGZ files from "
"an abcd_fastqc01.txt file using datatype, participant ID, "
"and session ID options.")
# positional arguments
parser.add_argument(dest='qc_input', metavar='INPUT_FILE', type=readable,
help="The NDA-formatted abcd_fastqc01.txt as-provided "
"from the NDA.")
parser.add_argument(dest='output_dir', metavar='OUTPUT_DIR', type=writable,
help="The output folder for the S3 links file and "
"subset abcd_fastqc01.txt file.")
# make argument groups
part_sess = parser.add_argument_group(
title='Participant and Session Options',
description="You can filter by exact participants and sessions with "
"the below options. All participant IDs can be in "
"either NDA GUID or BIDS ID or just the last eight ID "
"characters format. Letter case is ignored during "
"filtering. In the absence of any participant or session "
"options, all participants and sessions are included.")
participants = part_sess.add_mutually_exclusive_group()
sessions = part_sess.add_mutually_exclusive_group()
control = parser.add_argument_group(title='Control Options')
# controls argument group
control.add_argument('-d', '--datatypes', nargs='+', default=['all'],
choices=['all'] + list(DATATYPES.keys()), metavar='TYPE',
help="The space-separated datatypes to include. Defaults to \"all\".\n"
"Options are:\n"
f" {datatypes_str}")
# control.add_argument('-x', '--exclude', nargs='+', type=str, default=[],
# help="Space-separated strings to exclude within"
# "ftq_series_id. Defaults to no exclusions.")
control.add_argument('-sep', '--separate', action='store_true', default=False,
help="Separate the output file by session. Defaults "
"to False.")
control.add_argument('-l', '--log-level', metavar='LEVEL',
choices=LOG_LEVELS, default='INFO',
help="Set the minimum logging level. Defaults to INFO.\n"
"Options, in most to least verbose order, are:\n"
f" {log_levels_str}")
# participant and session argument group
part_sess.add_argument('-csv', '--csv', '--participant-session-csv',
default=None, metavar='FILE',type=readable,
help="The path to a comma-separated value file with "
"no header or index column. The file MUST have "
"exactly 1 participant ID, a comma, and then 1 "
"session ID per line. This is the preferred "
"method of passing in exact pairings of "
"participants and sessions to convert.")
participants.add_argument('-pid', '--participant-id', nargs='+',
default=None, metavar='PID', type=str,
help="A space-separated exact participant ID "
"list to filter on. Mutually exclusive "
"with -ptxt.")
participants.add_argument('-ptxt', '--participant-txt',
default=None, metavar='FILE', type=readable,
help="The path to a newline-separated plain "
"text file with exactly 1 participant ID "
"per line. Mutually exclusive with -pid.")
sessions.add_argument('-sid', '--session-id', nargs='+', metavar='SID',
choices=SESSIONS,
default=SESSIONS,
help="A space-separated session ID list to filter "
"on. Defaults to all sessions. Mutually "
"exclusive with -stxt.\n"
"Options are:\n"
f" {sessions_str}")
sessions.add_argument('-stxt', '--session-txt', metavar='FILE',
default=None, type=readable,
help="The path to a newline-separated plain text "
"file with exactly 1 session ID per line. "
"Mutually exclusive with -sid.")
return parser.parse_args()
def main():
# 1. Parse command line arguments
args = cli()
# Set up logging
if args.log_level == 'DEBUG':
logging.basicConfig(format=LOG_FORMAT, level=logging.DEBUG)
elif args.log_level == 'INFO':
logging.basicConfig(format=LOG_FORMAT, level=logging.INFO)
elif args.log_level == 'WARNING':
logging.basicConfig(format=LOG_FORMAT, level=logging.WARNING)
elif args.log_level == 'ERROR':
logging.basicConfig(format=LOG_FORMAT, level=logging.ERROR)
elif args.log_level == 'CRITICAL':
logging.basicConfig(format=LOG_FORMAT, level=logging.CRITICAL)
else:
raise ValueError(f"Invalid log level: {args.log_level}")
debug(args)
# read in the participant and session csv file
subses_list = []
subjects = []
sessions = []
if args.csv != None:
# read in the pid/sid csv file
with open(args.csv, 'r') as f:
for line in f.readlines():
split = line.rstrip('\n').strip().split(',')
if len(split) != 2:
raise ValueError(f"Invalid CSV format in {args.csv}")
else:
subses_list.append(split)
else:
# read in the pid txt file
if args.participant_txt != None:
with open(args.participant_txt, 'r') as f:
for line in f.readlines():
subjects.append(line.rstrip('\n').strip())
elif args.participant_id != None:
for pid in args.participant_id:
subjects.append(pid)
else:
warning("No participant IDs provided. All participants will be included.")
# read in the sid txt file
if args.session_txt != None:
with open(args.session_txt, 'r') as f:
for line in f.readlines():
sessions.append(line.rstrip('\n').strip())
else:
sessions = args.session_id
debug(subses_list)
debug(subjects)
debug(sessions)
# sanitize the subject and session search strings
subses = []
if len(subses_list) > 0:
for sub, ses in subses_list:
if len(sub) < 8:
raise ValueError(f"Invalid participant ID: {sub}")
subses.append(sub.upper()[-8:] + '_' + ses.lstrip('ses-'))
if len(subjects) > 0:
for sub in subjects:
if len(sub) < 8:
raise ValueError(f"Invalid participant ID: {sub}")
subjects = [sub.upper()[-8:] for sub in subjects]
if len(sessions) > 0:
for ses in sessions:
if ses not in SESSIONS:
raise ValueError(f"Invalid session ID: {ses}")
sessions = [ses.lstrip('ses-') for ses in sessions]
if len(subses) == 0 and len(subjects) == 0 and len(sessions) == 0:
warning("No participant or session filters provided. All participants and sessions will be included.")
# collect all datatypes
datatypes_str = "+".join(sorted(args.datatypes))
dt_set = set()
for datatype in args.datatypes:
for t in set(DATATYPES[datatype]['types']):
dt_set.add(t)
dt_list = sorted(list(dt_set))
debug(datatypes_str)
debug(dt_list)
# 2. Warn users about the filtered qc_input file for invalid data. Things like:
# - fMRI is selected and there's no fieldmap with it
# 3. Apply pid, sid, and datatype filters to filter the qc_input file
# Read in the qc_input file
input = pandas.read_csv(args.qc_input, sep='\t', dtype=str)
# Get the first row for later before it's gone
row0 = input.iloc[0]
# Filter by subses
if len(subses) != 0:
mask = input['ftq_series_id'].str.contains('|'.join(subses), flags=re.IGNORECASE)
input = input[mask]
# Filter by subjects
if len(subjects) != 0:
mask = input['ftq_series_id'].str.contains('|'.join(subjects), flags=re.IGNORECASE)
input = input[mask]
# Filter by sessions
if len(sessions) != 0:
mask = input['ftq_series_id'].str.contains('|'.join(sessions), flags=re.IGNORECASE)
input = input[mask]
# Filter by datatype
input = input[input['ftq_series_id'].str.contains('|'.join(dt_list))]
debug(input["ftq_series_id"])
# 4. Produce both the filtered qc_input file and the s3_output file named as
# {qc_input}_{suffix}.txt, see format at the top of this file
unique_sub = list(set([series.split('_')[0] for series in input['ftq_series_id']]))
unique_subses = list(set([(series.split('_')[0], series.split('_')[1]) for series in input['ftq_series_id']]))
suffix = f"{datatypes_str}_p-{len(unique_sub)}_s-{len(unique_subses)}"
debug(suffix)
# check if the separate flag is being flown
if args.separate:
output_dir = Path(f"{args.output_dir}/{args.qc_input.stem}_{suffix}")
output_dir.mkdir(exist_ok=True)
else:
output_dir = args.output_dir
# write out the S3 links file
output_s3 = args.output_dir / f"{args.qc_input.stem}_{suffix}_s3links.txt"
with open(output_s3, 'w') as f:
for series in input['file_source']:
f.write(f"{series}\n")
# write out the filtered qc_input file
output_qc = args.output_dir / f"{args.qc_input.stem}_{suffix}_filtered.txt"
# append back in the row 0 for completeness
input.loc[-1] = row0
input.index = input.index + 1 # shift index
input = input.sort_index() # sort by index
input.to_csv(output_qc, sep='\t', quoting=csv.QUOTE_ALL, index=False)
if args.separate:
# for every subject+session pair
for subber, sesser in unique_subses:
# write out a "mini" S3 links file
output_mini_s3 = output_dir / f"sub-{subber}_ses-{sesser}_s3links.txt"
mask = input['ftq_series_id'].str.contains(f"{subber}_{sesser}", flags=re.IGNORECASE)
subses_output = deepcopy(input[mask])
with open(output_mini_s3, 'w') as f:
for series in subses_output['file_source']:
f.write(f"{series}\n")
# write out a "mini" qc_input file
output_mini_qc = output_dir / f"sub-{subber}_ses-{sesser}_filtered.txt"
# append back in the row 0 for completeness
subses_output.loc[-1] = row0
subses_output.index = subses_output.index + 1
subses_output = subses_output.sort_index()
subses_output.to_csv(output_mini_qc, sep='\t', quoting=csv.QUOTE_ALL, index=False)
del(subses_output)
if __name__ == '__main__':
main()