-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpipeline.py
629 lines (510 loc) · 22.9 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
#! /usr/bin/env python3
import argparse
import logging
import os
import random
import string
from logging import debug, info, warning, error, critical
from nipype import Workflow
from nipype import Node
from nipype import MapNode
from nipype import Function
from nipype.interfaces.base import CommandLine
from utilities import readable, available, writable
# Set up logging
LOG_FORMAT = '%(asctime)s - %(levelname)s - %(message)s'
LOG_LEVELS = ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL']
# create help string for the log level option
log_levels_str = "\n ".join(LOG_LEVELS)
def cli():
parser = argparse.ArgumentParser(description='Run the fasttrack2bids workflow')
parser.add_argument('-p', '--package-id', type=int, required=True,
help='The package ID of the NDA ABCD Fast-Track dataset you already packaged')
parser.add_argument('-s', '--input-s3-links', type=readable, required=True,
help='The path to the S3 links TXT file')
parser.add_argument('-c', '--input-dcm2bids-config', type=readable, required=True,
help='The path to the Dcm2Bids config JSON file')
parser.add_argument('-o', '--output-dir', type=writable, required=True,
help='The output directory')
parser.add_argument('-t', '--temporary-dir', type=writable,
help='The temporary intermediary files directory')
parser.add_argument('-z', '--preserve', choices=['LOGS', 'TGZ', 'DICOM', 'BIDS'], default=['BIDS'], nargs='+',
help='Select one or more file types to preserve, only BIDS is preserved by default')
parser.add_argument('-n', '--n-all', type=int, default=1,
help='The number of parallel commands to use for all three')
parser.add_argument('--n-download', type=int, default=1,
help='The number of downloadcmd worker threads to use')
parser.add_argument('--n-unpack', type=int, default=1,
help='The number of tar xzf commands to run in parallel')
parser.add_argument('--n-convert', type=int, default=1,
help='The number of dcm2bids conversion commands to run in parallel')
parser.add_argument('-l', '--log-level', metavar='LEVEL',
choices=LOG_LEVELS, default='INFO',
help="Set the minimum logging level. Defaults to INFO.\n"
"Options, in most to least verbose order, are:\n"
f" {log_levels_str}")
parser.add_argument('-d', '--disable-workaround', action='store_true',
help='By default (when present), a "corrupt volume" in any func run '
'DICOM series [where the first DICOM contains "=RawDataStorage" '
'in field (0002,0002)] is deleted after unpacking and before '
'conversion to BIDS. This flag disables that default feature in '
'order to preserve the "corrupt volume" DICOMs. This flag will '
'make dcm2niix fail.')
return parser.parse_args()
def collect_glob(pattern, mode):
from os.path import isfile, isdir
from glob import glob
if mode == 'files':
glob_matches = [match for match in glob(pattern) if isfile(match)]
elif mode == 'directories':
glob_matches = [match for match in glob(pattern) if isdir(match)]
else:
raise ValueError(f"Invalid collect_glob mode: {mode}")
return sorted(glob_matches)
def format_dcm2bids_args(bids_session_directory, config_file, output_dir):
participant, session = bids_session_directory.split('/')[-2:]
arguments = f'-p {participant} -s {session} -d {bids_session_directory} -c {config_file} -o {output_dir}'
return arguments
def unpack_tgz(tgz_file, output_dir):
import tarfile
with tarfile.open(tgz_file, 'r:gz') as tar:
tar.extractall(output_dir)
return output_dir
def corrupt_volume_check(func_dcm):
import os
import pydicom
dicom_one_meta = pydicom.dcmread(func_dcm)
if dicom_one_meta.file_meta.MediaStorageSOPClassUID.name == 'Raw Data Storage':
func_run = os.path.dirname(func_dcm)
else:
func_run = ''
return func_run
def corrupt_volume_removal(func_run):
def rename_scan(series):
import re
from pathlib import Path
scan = Path(series)
basename = scan.name
funcdir = scan.parent
if 'rsfMRI' in basename:
task = 'rest'
elif 'MID' in basename:
task = 'MID'
elif 'SST' in basename:
task = 'SST'
elif 'nBack' in basename:
task = 'nback'
glob_expression = re.sub(r'_run-\d+', '_run-*', str(basename))
scans = sorted([str(x) for x in funcdir.glob(glob_expression) if x.is_dir()])
for i, scandir in enumerate(scans):
run = i + 1
if scandir == str(scan):
break
subsesdir = str(funcdir.parent)
subject = subsesdir.split('/')[-2]
session = subsesdir.split('/')[-1]
newname = f'{subject}/{session}/func/{subject}_{session}_task-{task}_run-{run:02}_bold.nii.gz'
return newname
import os
import pydicom
from glob import glob
if func_run == '':
return False
else:
# rename the scan to the BIDS format for scans.tsv
alt_name = rename_scan(func_run)
# in dicom_one, grab the number of temporal positions (2001,1081) and check the number of slices per time point is 60
dicom_one = glob(f'{func_run}/*_dicom000001.dcm')[0]
dicom_one_meta = pydicom.dcmread(dicom_one)
num_temporal_positions = int(dicom_one_meta[0x2001,0x1081].value)
func_run_dicoms = [dicom for dicom in glob(f'{func_run}/*.dcm')]
# if the number of slices per time point is not 60, print an error message
if num_temporal_positions * 60 != len(func_run_dicoms):
raise ValueError(f'ERROR: {func_run} has {len(func_run_dicoms)} DICOMs, but {num_temporal_positions} temporal positions X 60 does not equal {len(func_run_dicoms)}')
# remove the entire first corrupt volume by removing 60 slices
dicom_one_basename = os.path.basename(dicom_one)
for i in range(60):
dicom_num = str( (i * num_temporal_positions) + 1 ).zfill(6)
dicom_basename = dicom_one_basename.replace('000001', dicom_num)
os.remove(os.path.join(func_run, dicom_basename))
# go to the parent folder of the DICOM folder and create a scans.tsv
root_relpath = '/'.join(func_run.split('/')[:-5])
scans_file = f'{root_relpath}/scans.tsv'
if not os.path.exists(scans_file):
with open(scans_file, 'w') as f:
f.write('filename\tcorrupt_volume\n')
print(f'Creating "scans.tsv": {scans_file}')
with open(scans_file, 'a') as f:
f.write(f'{alt_name}\t1\n')
return True
def retrieve_task_events(input_root, output_root):
import os
import shutil
from pathlib import Path
if str(Path(output_root)).endswith('sourcedata'):
print('WARNING: output_root should not end with sourcedata, correcting...')
bids_root = str(Path(output_root).resolve().replace('sourcedata', '').rstrip('/'))
else:
bids_root = str(Path(output_root).resolve())
collection = {}
for root, dirs, files in os.walk(str(Path(input_root).resolve())):
if not root.endswith('func'):
continue
for file in files:
if 'EventRelatedInformation.' in file:
if 'MID' in file:
task = 'MID'
elif 'SST' in file:
task = 'SST'
elif 'nBack' in file:
task = 'nback'
else:
print(f'ERROR: Unknown task in {file}')
sub = root.split('/')[-3]
ses = root.split('/')[-2]
if sub not in collection:
collection[sub] = {}
if ses not in collection[sub]:
collection[sub][ses] = {}
if task not in collection[sub][ses]:
collection[sub][ses][task] = []
collection[sub][ses][task].append(os.path.join(root, file))
for sub in collection:
for ses in collection[sub]:
for task in collection[sub][ses]:
task_list = sorted(collection[sub][ses][task])
for i, task_file in enumerate(task_list):
fileparts = task_file.split('/')
subject = fileparts[-4]
session = fileparts[-3]
run = i + 1
ext = task_file.split('.')[-1]
output_path = f'{bids_root}/sourcedata/{subject}/{session}/func/{subject}_{session}_task-{task}_run-{run:02}_bold_EventRelatedInformation.{ext}'
os.makedirs(os.path.dirname(output_path), exist_ok=True)
shutil.copy(task_file, output_path)
return
def main():
# Parse the command line arguments
args = cli()
# Set up logging
if args.log_level == 'DEBUG':
logging.basicConfig(format=LOG_FORMAT, level=logging.DEBUG)
elif args.log_level == 'INFO':
logging.basicConfig(format=LOG_FORMAT, level=logging.INFO)
elif args.log_level == 'WARNING':
logging.basicConfig(format=LOG_FORMAT, level=logging.WARNING)
elif args.log_level == 'ERROR':
logging.basicConfig(format=LOG_FORMAT, level=logging.ERROR)
elif args.log_level == 'CRITICAL':
logging.basicConfig(format=LOG_FORMAT, level=logging.CRITICAL)
else:
raise ValueError(f"Invalid log level: {args.log_level}")
# set the pipeline suffix from the input S3 links file
pipeline_suffix = str(args.input_s3_links.stem.replace("_s3links", ""))
# check if the temporary directory is provided
if args.temporary_dir != None:
output_dir = f'{args.temporary_dir}/{pipeline_suffix}'
else:
output_dir = f'{args.output_dir}/{pipeline_suffix}'
# assign the cleanup directory
cleanup_dir = args.output_dir
# set the number of parallel commands to use for all three
if args.n_all > 1:
warning(f'Using parallel setting of {args.n_all} for all stages')
n_download = args.n_all
n_unpack = args.n_all
n_convert = args.n_all
else:
n_download = args.n_download
n_unpack = args.n_unpack
n_convert = args.n_convert
# initialize the inputs
dcm2bids_config_json = str(args.input_dcm2bids_config)
output_tgz_root = f'{output_dir}/TGZ'
output_dicom_root = f'{output_dir}/DICOM'
output_bids_root = f'{output_dir}/BIDS'
pipeline_base_dir = f'{output_dir}/pipeline'
if args.preserve == ['LOGS']:
error('Only the LOGS option was selected to be preserved. You MUST choose to preserve something besides LOGS to produce files.')
return
else:
# make the TGZ directory
mkdir_tgz = Node(
CommandLine('mkdir', args=f'-p {output_tgz_root}'),
name='mkdir_tgz')
# download the TGZ files
downloadcmd = Node(
CommandLine('downloadcmd',
args=f'-dp {args.package_id} -t {str(args.input_s3_links)} -d {output_tgz_root} --workerThreads {n_download}'),
name='downloadcmd')
### Create the NDA TGZ downloading workflow ###
download_wf = Workflow(
name="download",
base_dir=pipeline_base_dir,
)
download_wf.add_nodes([
mkdir_tgz,
downloadcmd,
])
download_wf.connect([
(mkdir_tgz, downloadcmd, []),
])
# Run the download workflow
download_wf.write_graph("download.dot")
download_results = download_wf.run()
debug(download_results)
# decide whether or not to continue with the unpacking
if 'DICOM' not in args.preserve and 'BIDS' not in args.preserve:
warning('DICOM and BIDS intermediary files are not to be preserved and will not be produced.')
else:
# make the DICOM directory
mkdir_dicom = Node(
CommandLine('mkdir', args=f'-p {output_dicom_root}'),
name='mkdir_dicom')
# collect the input DICOM sessions
collect_tgzs = Node(
Function(
function=collect_glob,
input_names=['pattern', 'mode'],
output_names=['output_list']
),
name='collect_tgzs')
collect_tgzs.inputs.pattern = f'{output_tgz_root}/image03/*.tgz'
collect_tgzs.inputs.mode = 'files'
# unpack the TGZ files
unpack_tgz_node = MapNode(
Function(
function=unpack_tgz,
input_names=['tgz_file', 'output_dir'],
output_names=['output_dir']
),
iterfield=['tgz_file'],
name='unpack_tgz')
unpack_tgz_node.inputs.output_dir = output_dicom_root
### Create the TGZ unpacking workflow ###
unpack_wf = Workflow(
name="unpack",
base_dir=pipeline_base_dir,
)
unpack_wf.add_nodes([
mkdir_dicom,
collect_tgzs,
unpack_tgz_node,
])
unpack_wf.connect([
(mkdir_dicom, collect_tgzs, []),
(collect_tgzs, unpack_tgz_node, [('output_list', 'tgz_file')]),
])
# Run the unpacking workflow
unpack_wf.write_graph("unpack.dot")
unpack_results = unpack_wf.run(plugin='MultiProc', plugin_args={'n_procs' : n_unpack})
debug(unpack_results)
# decide whether or not to continue with the conversion
if 'BIDS' not in args.preserve:
warning('BIDS files are not to be preserved and so will not be produced.')
else:
### Create the DICOM to BIDS conversion workflow ###
# make the BIDS directory
mkdir_bids = Node(
CommandLine('mkdir', args=f'-p {output_bids_root}'),
name='mkdir_bids')
# collect the input DICOM sessions
collect_dicom_sessions = Node(
Function(
function=collect_glob,
input_names=['pattern', 'mode'],
output_names=['output_list']
),
name='collect_dicom_sessions')
collect_dicom_sessions.inputs.pattern = f'{output_dicom_root}/sub-*/ses-*'
collect_dicom_sessions.inputs.mode = 'directories'
# as long as the workaround is not disabled, remove the corrupt volumes
if not args.disable_workaround:
# collect all func DICOM 1's
collect_func_dcms = Node(
Function(
function=collect_glob,
input_names=['pattern', 'mode'],
output_names=['output_list']
),
name='collect_func_dcms')
collect_func_dcms.inputs.pattern = f'{output_dicom_root}/sub-*/ses-*/func/*/*_dicom000001.dcm'
collect_func_dcms.inputs.mode = 'files'
# check for corrupt volumes
check_corrupt_volumes = MapNode(
Function(
function=corrupt_volume_check,
input_names=['func_dcm'],
output_names=['func_run']
),
iterfield=['func_dcm'],
name='check_corrupt_volumes')
# remove any found corrupt volumes
remove_corrupt_volume = MapNode(
Function(
function=corrupt_volume_removal,
input_names=['func_run'],
output_names=['is_corrected']
),
iterfield=['func_run'],
name='remove_corrupt_volume')
# define workaround workflow
workaround_wf = Workflow(
name="workaround",
base_dir=pipeline_base_dir,
)
workaround_wf.add_nodes([
collect_func_dcms,
check_corrupt_volumes,
remove_corrupt_volume
])
workaround_wf.connect([
(collect_func_dcms, check_corrupt_volumes, [('output_list', 'func_dcm')]),
(check_corrupt_volumes, remove_corrupt_volume, [('func_run', 'func_run')])
])
# Run the workaround workflow
workaround_wf.write_graph("workaround.dot")
workaround_results = workaround_wf.run(plugin='MultiProc', plugin_args={'n_procs' : n_convert})
debug(workaround_results)
# setup for the DICOM to BIDS conversion
format_args = MapNode(
Function(
function=format_dcm2bids_args,
input_names=['bids_session_directory', 'config_file', 'output_dir'],
output_names=['arguments']
),
iterfield=['bids_session_directory'],
name='format_args')
format_args.inputs.config_file = dcm2bids_config_json
format_args.inputs.output_dir = output_bids_root
# DICOM to BIDS conversion MapNode
dcm2bids = MapNode(
CommandLine('dcm2bids'),
iterfield=['args'],
name='dcm2bids')
### Create the DICOM to BIDS conversion workflow ###
convert_wf = Workflow(
name="convert",
base_dir=pipeline_base_dir,
)
convert_wf.add_nodes([
mkdir_bids,
collect_dicom_sessions,
format_args,
dcm2bids
])
convert_wf.connect([
(mkdir_bids, collect_dicom_sessions, []),
(collect_dicom_sessions, format_args, [('output_list', 'bids_session_directory')]),
(format_args, dcm2bids, [('arguments', 'args')]),
])
# Run the conversion workflow
convert_wf.write_graph("convert.dot")
convert_results = convert_wf.run(plugin='MultiProc', plugin_args={'n_procs' : n_convert})
debug(convert_results)
if 'BIDS' in args.preserve:
# make the BIDS rawdata output directory
mkdir_bids = Node(
CommandLine('mkdir', args=f'-p {cleanup_dir}/rawdata'),
name='mkdir_bids')
mkdir_bids_results = mkdir_bids.run()
debug(mkdir_bids_results)
# retrieve the scans.tsv file if it's there and uniquely identify it
scans_tsv = f'{output_dir}/scans.tsv'
if os.path.exists(scans_tsv):
temp_string = ''.join(random.choices(string.ascii_uppercase + '123456789', k=8))
scans_tsv_unique = f'{cleanup_dir}/rawdata/scans_{temp_string}.tsv'
rsync_scans = Node(
CommandLine('rsync', args=f'-art {scans_tsv} {scans_tsv_unique}'),
name='rsync_scans')
rsync_scans_results = rsync_scans.run()
debug(rsync_scans_results)
# move the BIDS files to the output directory
rsync_bids = Node(
CommandLine('rsync', args=f'-art {output_bids_root}/sub-* {cleanup_dir}/rawdata/'),
name='rsync_bids')
rsync_bids_results = rsync_bids.run()
debug(rsync_bids_results)
# retrieve the task events
task_events = Node(
Function(
function=retrieve_task_events,
input_names=['input_root', 'output_root']
),
name='task_events')
task_events.inputs.input_root = output_dicom_root
task_events.inputs.output_root = cleanup_dir
task_events_results = task_events.run()
debug(task_events_results)
if 'LOGS' in args.preserve:
# make the BIDS LOGS output directory
mkdir_bids_logs = Node(
CommandLine('mkdir', args=f'-p {cleanup_dir}/code/logs/tmp_dcm2bids/log'),
name='mkdir_bids_logs')
mkdir_bids_logs_results = mkdir_bids_logs.run()
debug(mkdir_bids_logs_results)
# move the LOG files to the output directory
rsync_bids_logs = Node(
CommandLine('rsync', args=f'-art {output_bids_root}/tmp_dcm2bids/log/*.log {cleanup_dir}/code/logs/tmp_dcm2bids/log/'),
name='rsync_bids_logs')
rsync_bids_logs_results = rsync_bids_logs.run()
debug(rsync_bids_logs_results)
if 'DICOM' in args.preserve:
# make the DICOM sourcedata output directory
mkdir_sddicom = Node(
CommandLine('mkdir', args=f'-p {cleanup_dir}/sourcedata/DICOM'),
name='mkdir_sdtgz')
mkdir_sddicom_results = mkdir_sddicom.run()
debug(mkdir_sddicom_results)
# move the DICOM files to the output directory
rsync_dicom = Node(
CommandLine('rsync', args=f'-art {output_dicom_root}/* {cleanup_dir}/sourcedata/DICOM/'),
name='rsync_dicom')
rsync_dicom_results = rsync_dicom.run()
debug(rsync_dicom_results)
if 'TGZ' in args.preserve:
# make the TGZ sourcedata output directory
mkdir_sdtgz = Node(
CommandLine('mkdir', args=f'-p {cleanup_dir}/sourcedata/TGZ'),
name='mkdir_sdtgz')
mkdir_sdtgz_results = mkdir_sdtgz.run()
debug(mkdir_sdtgz_results)
# move the TGZ files to the output directory
rsync_tgz = Node(
CommandLine('rsync', args=f'-art {output_tgz_root}/* {cleanup_dir}/sourcedata/TGZ/'),
name='rsync_tgz')
rsync_tgz_results = rsync_tgz.run()
debug(rsync_tgz_results)
if 'LOGS' in args.preserve:
# make the LOGS output directory
mkdir_logs = Node(
CommandLine('mkdir', args=f'-p {cleanup_dir}/code/logs/{pipeline_suffix}'),
name='mkdir_logs')
mkdir_logs_results = mkdir_logs.run()
debug(mkdir_logs_results)
# sync the LOG files to the output directory
rsync_logs = Node(
CommandLine('rsync', args=f'-art {pipeline_base_dir}/download {pipeline_base_dir}/unpack {pipeline_base_dir}/convert {cleanup_dir}/code/logs/{pipeline_suffix}/'),
name='rsync_logs')
rsync_logs_results = rsync_logs.run()
debug(rsync_logs_results)
if not args.disable_workaround:
# sync the workaround LOG files to the output directory
rsync_workaround = Node(
CommandLine('rsync', args=f'-art {pipeline_base_dir}/workaround {cleanup_dir}/code/logs/{pipeline_suffix}/'),
name='rsync_workaround')
rsync_workaround_results = rsync_workaround.run()
debug(rsync_workaround_results)
if args.temporary_dir != None:
# remove the temporary directory
rm_tmp = Node(
CommandLine('rm', args=f'-rf {args.temporary_dir}/{pipeline_suffix}'),
name='rm_tmp')
else:
rm_tmp = Node(
CommandLine('rm', args=f'-rf {args.output_dir}/{pipeline_suffix}'),
name='rm_tmp')
rm_tmp_results = rm_tmp.run()
debug(rm_tmp_results)
if __name__ == '__main__':
main()