-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathgraphlet_driver.cpp
92 lines (84 loc) · 3.14 KB
/
graphlet_driver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/*!\mainpage Parallel Parameterized Graphlet Decomposition (PGD) Library
*
* \section INTRODUCTION
*
* A general high-performance parameterized parallel framework for computing the graphlet decomposition.
* The library is designed to be fast for both large sparse graphs as well as dense graphs.
* See the readme for a complete list of features.
*
* \section AUTHORS
*
* Nesreen K. Ahmed, ([email protected]),<BR>
* Ryan A. Rossi ([email protected])<BR>
*
*
* \section DOWNLOAD
*
* <a href="http://nesreenahmed.com/graphlets/pgd.zip">PGD Library</a><BR>
* <a href="http://networkrepository.com">Network Data Repository</a><BR>
* See <a href="http://nesreenahmed.com/graphlets">http://nesreenahmed.com/graphlets</a> for more information.<BR>
*
*
* \section PUBLICATIONS
*
* If used, cite the following paper:
*
* Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, Nick Duffield,
* Efficient Graphlet Counting for Large Networks, IEEE International
* Conference on Data Mining (ICDM), pages 10, 2015.
*
* Download PDF: <a href="http://www.nesreenahmed.com/publications/ahmed-et-al-icdm2015.pdf">http://www.nesreenahmed.com/publications/ahmed-et-al-icdm2015.pdf</a><BR>
*
* @inproceedings{ahmed2015icdm,
* title={Efficient Graphlet Counting for Large Networks},
* author={Nesreen K. Ahmed and Jennifer Neville and Ryan A. Rossi and Nick Duffield},
* booktitle={ICDM},
* pages={1--10},
* year={2015}
* }
*
* \section COPYRIGHT & CONTACT
*
* Copyright (C) 2012-2015,<BR>
* Nesreen K. Ahmed (http://nesreenahmed.com), All rights reserved.<BR><BR>
*
* Email Nesreen Ahmed at nesreen.k.ahmed [at] intel [dot] com.<BR>
*
*/
#include "graphlet.h"
using namespace std;
using namespace graphlet;
int main(int argc, char *argv[]) {
/** @brief parse command args */
params p(argc, argv);
if (p.verbose) cout << "graph file: " << p.graph <<endl;
/** @brief read graph, optimize alg/data structs, etc. */
graphlet_core G(p);
G.compute_assortativity();
cout << "r = " << G.get_assortativity() << endl; // Assortativity
/** @brief Compute k-core decomposition (k-core numbers, and degen. ordering) */
G.compute_cores();
cout << "K = " << G.get_max_core() <<endl; // Max K-core
/// Creates E_ordered where edges are ordered via a strategy (kcore, degree, etc.)
double s = tic();
G.sort_edges(p.ordering, p.is_small_to_large);
if (p.verbose) cout << "edge/job ordering: " << p.ordering << ", time: " << get_time()-s <<endl;
if (p.is_micro_stats()) { G.graphlet_decomposition_micro(p.workers); }
else { G.graphlet_decomposition(p.workers); }
toc(s);
G.print_graphlet_counts();
if (p.is_micro_stats()) G.print_micro_stats();
cout << "graphlet decomposition time: " << s << " sec" <<endl;
/// Save total counts of each motif (global macro stats) to the file specified by the user.
if (p.is_macro_stats()) G.write_macro_stats(p.macro_stats_filename);
if (p.is_micro_stats()) G.write_micro_stats(p.micro_stats_filename);
G.print_GFD();
G.print_connected_GFD();
G.print_disconnected_GFD();
if (p.is_micro_stats()) {
univar_stats s;
s.compute_univariate_stats(G.local_4_clique);
cout << s.tostring() <<endl;
}
return 0;
}