forked from shibing624/MedicalGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretraining.py
767 lines (695 loc) · 32.5 KB
/
pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
# -*- coding: utf-8 -*-
# Copyright 2023 XuMing([email protected]) and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
part of this code is adapted from https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py
"""
import math
import os
from dataclasses import dataclass, field
from glob import glob
from itertools import chain
from typing import Optional, List, Dict, Any, Mapping
import numpy as np
import torch
from datasets import load_dataset
from loguru import logger
from peft import LoraConfig, TaskType, get_peft_model, PeftModel, prepare_model_for_kbit_training
from sklearn.metrics import accuracy_score
from transformers import (
AutoConfig,
BloomForCausalLM,
AutoModelForCausalLM,
AutoModel,
LlamaTokenizer,
LlamaForCausalLM,
BloomTokenizerFast,
AutoTokenizer,
HfArgumentParser,
Trainer,
Seq2SeqTrainingArguments,
is_torch_tpu_available,
set_seed,
BitsAndBytesConfig,
)
from transformers.trainer import TRAINING_ARGS_NAME
from transformers.utils.versions import require_version
try:
from transformers.integrations import is_deepspeed_zero3_enabled
except ImportError: # https://github.com/huggingface/transformers/releases/tag/v4.33.1
from transformers.deepspeed import is_deepspeed_zero3_enabled
MODEL_CLASSES = {
"bloom": (AutoConfig, BloomForCausalLM, BloomTokenizerFast),
"chatglm": (AutoConfig, AutoModel, AutoTokenizer),
"llama": (AutoConfig, LlamaForCausalLM, LlamaTokenizer),
"baichuan": (AutoConfig, AutoModelForCausalLM, AutoTokenizer),
"auto": (AutoConfig, AutoModelForCausalLM, AutoTokenizer),
}
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_type: str = field(
default=None,
metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())}
)
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
tokenizer_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The tokenizer for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
load_in_8bit: bool = field(default=False, metadata={"help": "Whether to load the model in 8bit mode or not."})
load_in_4bit: bool = field(default=False, metadata={"help": "Whether to load the model in 4bit mode or not."})
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=False,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
torch_dtype: Optional[str] = field(
default=None,
metadata={
"help": (
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
"dtype will be automatically derived from the model's weights."
),
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
device_map: Optional[str] = field(
default="auto",
metadata={"help": "Device to map model to. If `auto` is passed, the device will be selected automatically. "},
)
trust_remote_code: bool = field(
default=True,
metadata={"help": "Whether to trust remote code when loading a model from a remote checkpoint."},
)
def __post_init__(self):
if self.model_type is None:
raise ValueError(
"You must specify a valid model_type to run training. Available model types are " + ", ".join(
MODEL_CLASSES.keys()))
if self.model_name_or_path is None:
raise ValueError("You must specify a valid model_name_or_path to run training.")
@dataclass
class DataArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file_dir: Optional[str] = field(default=None, metadata={"help": "The train text data file folder."})
validation_file_dir: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on text file folder."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
block_size: Optional[int] = field(
default=1024,
metadata={
"help": (
"Optional input sequence length after tokenization. "
"The training dataset will be truncated in block of this size for training. "
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=1,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
keep_linebreaks: bool = field(
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
)
def __post_init__(self):
if self.streaming:
require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
@dataclass
class ScriptArguments:
use_peft: bool = field(default=True, metadata={"help": "Whether to use peft"})
target_modules: Optional[str] = field(default="all")
lora_rank: Optional[int] = field(default=8)
lora_dropout: Optional[float] = field(default=0.05)
lora_alpha: Optional[float] = field(default=32.0)
modules_to_save: Optional[str] = field(default=None)
peft_path: Optional[str] = field(default=None)
qlora: bool = field(default=False, metadata={"help": "Whether to use qlora"})
def accuracy(predictions, references, normalize=True, sample_weight=None):
return {
"accuracy": float(accuracy_score(references, predictions, normalize=normalize, sample_weight=sample_weight))
}
def compute_metrics(eval_preds):
preds, labels = eval_preds
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics, we need to shift the labels
labels = labels[:, 1:].reshape(-1)
preds = preds[:, :-1].reshape(-1)
return accuracy(predictions=preds, references=labels)
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
def fault_tolerance_data_collator(features: List) -> Dict[str, Any]:
if not isinstance(features[0], Mapping):
features = [vars(f) for f in features]
first = features[0]
batch = {}
# Special handling for labels.
# Ensure that tensor is created with the correct type
if "label" in first and first["label"] is not None:
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
dtype = torch.long if isinstance(label, int) else torch.float
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
elif "label_ids" in first and first["label_ids"] is not None:
if isinstance(first["label_ids"], torch.Tensor):
batch["labels"] = torch.stack([f["label_ids"] for f in features])
else:
dtype = torch.long if type(first["label_ids"][0]) is int else torch.float
batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype)
# Handling of all other possible keys.
# Again, we will use the first element to figure out which key/values are not None for this model.
try:
for k, v in first.items():
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
if isinstance(v, torch.Tensor):
batch[k] = torch.stack([f[k] for f in features])
elif isinstance(v, np.ndarray):
batch[k] = torch.tensor(np.stack([f[k] for f in features]))
else:
batch[k] = torch.tensor([f[k] for f in features])
except ValueError: # quick fix by simply take the first example
for k, v in first.items():
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
if isinstance(v, torch.Tensor):
batch[k] = torch.stack([features[0][k]] * len(features))
elif isinstance(v, np.ndarray):
batch[k] = torch.tensor(np.stack([features[0][k]] * len(features)))
else:
batch[k] = torch.tensor([features[0][k]] * len(features))
return batch
class GroupTextsBuilder:
def __init__(self, max_seq_length):
self.max_seq_length = max_seq_length
def __call__(self, examples):
# Concatenate all texts.
firsts = {k: examples[k][0][0] for k in examples.keys()}
lasts = {k: examples[k][0][-1] for k in examples.keys()}
contents = {k: sum([vi[1:-1] for vi in v], []) for k, v in examples.items()}
total_length = len(contents[list(examples.keys())[0]])
content_length = self.max_seq_length - 2
if total_length >= content_length:
total_length = (total_length // content_length) * content_length
# Split by chunks of max_len.
result = {
k: [[firsts[k]] + t[i: i + content_length] + [lasts[k]] for i in range(0, total_length, content_length)] for
k, t in contents.items()}
return result
class SavePeftModelTrainer(Trainer):
"""
Trainer for lora models
"""
def save_model(self, output_dir=None, _internal_call=False):
"""Save the LoRA model."""
os.makedirs(output_dir, exist_ok=True)
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
self.model.save_pretrained(output_dir)
def save_model(model, tokenizer, args):
"""Save the model and the tokenizer."""
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
def save_model_zero3(model, tokenizer, args, trainer):
"""Save the model for deepspeed zero3.
refer https://github.com/lm-sys/FastChat/blob/main/fastchat/train/train_lora.py#L209
"""
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
state_dict_zero3 = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(args.output_dir, state_dict=state_dict_zero3)
tokenizer.save_pretrained(output_dir)
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def find_all_linear_names(peft_model, int4=False, int8=False):
"""Find all linear layer names in the model. reference from qlora paper."""
cls = torch.nn.Linear
if int4 or int8:
import bitsandbytes as bnb
if int4:
cls = bnb.nn.Linear4bit
elif int8:
cls = bnb.nn.Linear8bitLt
lora_module_names = set()
for name, module in peft_model.named_modules():
if isinstance(module, cls):
# last layer is not add to lora_module_names
if 'lm_head' in name:
continue
if 'output_layer' in name:
continue
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
return sorted(lora_module_names)
def main():
parser = HfArgumentParser((ModelArguments, DataArguments, Seq2SeqTrainingArguments, ScriptArguments))
model_args, data_args, training_args, script_args = parser.parse_args_into_dataclasses()
logger.info(f"Model args: {model_args}")
logger.info(f"Data args: {data_args}")
logger.info(f"Training args: {training_args}")
logger.info(f"Script args: {script_args}")
logger.info(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Load tokenizer
config_class, model_class, tokenizer_class = MODEL_CLASSES[model_args.model_type]
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"trust_remote_code": model_args.trust_remote_code,
}
tokenizer_name_or_path = model_args.tokenizer_name_or_path
if not tokenizer_name_or_path:
tokenizer_name_or_path = model_args.model_name_or_path
tokenizer = tokenizer_class.from_pretrained(tokenizer_name_or_path, **tokenizer_kwargs)
if data_args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 2048:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 2048. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`."
)
else:
if data_args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(data_args.block_size, tokenizer.model_max_length)
# Preprocessing the datasets.
def tokenize_function(examples):
tokenized_inputs = tokenizer(
examples["text"],
truncation=True,
padding='max_length',
max_length=block_size
)
# Copy the input_ids to the labels for language modeling. This is suitable for both
# masked language modeling (like BERT) or causal language modeling (like GPT).
tokenized_inputs["labels"] = tokenized_inputs["input_ids"].copy()
return tokenized_inputs
def tokenize_wo_pad_function(examples):
return tokenizer(examples["text"])
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_text_function(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i: i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
streaming=data_args.streaming,
)
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
streaming=data_args.streaming,
)
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
streaming=data_args.streaming,
)
else:
data_files = {}
dataset_args = {}
if data_args.train_file_dir is not None and os.path.exists(data_args.train_file_dir):
train_data_files = glob(f'{data_args.train_file_dir}/**/*.txt', recursive=True) + glob(
f'{data_args.train_file_dir}/**/*.json', recursive=True) + glob(
f'{data_args.train_file_dir}/**/*.jsonl', recursive=True)
logger.info(f"train files: {train_data_files}")
# Train data files must be same type, e.g. all txt or all jsonl
types = [f.split('.')[-1] for f in train_data_files]
if len(set(types)) > 1:
raise ValueError(f"train files must be same type, e.g. all txt or all jsonl, but got {types}")
data_files["train"] = train_data_files
if data_args.validation_file_dir is not None and os.path.exists(data_args.validation_file_dir):
eval_data_files = glob(f'{data_args.validation_file_dir}/**/*.txt', recursive=True) + glob(
f'{data_args.validation_file_dir}/**/*.json', recursive=True) + glob(
f'{data_args.validation_file_dir}/**/*.jsonl', recursive=True)
logger.info(f"eval files: {eval_data_files}")
data_files["validation"] = eval_data_files
# Train data files must be same type, e.g. all txt or all jsonl
types = [f.split('.')[-1] for f in eval_data_files]
if len(set(types)) > 1:
raise ValueError(f"train files must be same type, e.g. all txt or all jsonl, but got {types}")
extension = "text" if data_files["train"][0].endswith('txt') else 'json'
if extension == "text":
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
**dataset_args,
)
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
extension,
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
**dataset_args,
)
raw_datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
**dataset_args,
)
logger.info(f"Raw datasets: {raw_datasets}")
# Preprocessing the datasets.
if training_args.do_train:
column_names = list(raw_datasets["train"].features)
else:
column_names = list(raw_datasets["validation"].features)
with training_args.main_process_first(desc="Dataset tokenization and grouping"):
if not data_args.streaming:
if training_args.group_by_length:
tokenized_datasets = raw_datasets.map(
tokenize_wo_pad_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
lm_datasets = tokenized_datasets.map(
group_text_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Grouping texts in chunks of {block_size}",
)
else:
lm_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
else:
if training_args.group_by_length:
tokenized_datasets = raw_datasets.map(
tokenize_wo_pad_function,
batched=True,
remove_columns=column_names,
)
lm_datasets = tokenized_datasets.map(
group_text_function,
batched=True,
)
else:
lm_datasets = raw_datasets.map(
tokenize_function,
batched=True,
remove_columns=column_names,
)
train_dataset = None
max_train_samples = 0
if training_args.do_train:
if "train" not in lm_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = lm_datasets['train']
max_train_samples = len(train_dataset)
if data_args.max_train_samples is not None and data_args.max_train_samples > 0:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
logger.debug(f"Num train_samples: {len(train_dataset)}")
logger.debug("Tokenized training example:")
logger.debug(tokenizer.decode(train_dataset[0]['input_ids']))
eval_dataset = None
max_eval_samples = 0
if training_args.do_eval:
if "validation" not in lm_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = lm_datasets["validation"]
max_eval_samples = len(eval_dataset)
if data_args.max_eval_samples is not None and data_args.max_eval_samples > 0:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
logger.debug(f"Num eval_samples: {len(eval_dataset)}")
logger.debug("Tokenized eval example:")
logger.debug(tokenizer.decode(eval_dataset[0]['input_ids']))
# Load model
if model_args.model_type and model_args.model_name_or_path:
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
world_size = int(os.environ.get("WORLD_SIZE", "1"))
ddp = world_size != 1
if ddp:
model_args.device_map = {"": int(os.environ.get("LOCAL_RANK", "0"))}
if script_args.qlora and (len(training_args.fsdp) > 0 or is_deepspeed_zero3_enabled()):
logger.warning("FSDP and ZeRO3 are both currently incompatible with QLoRA.")
config = config_class.from_pretrained(
model_args.model_name_or_path,
torch_dtype=torch_dtype,
trust_remote_code=model_args.trust_remote_code,
cache_dir=model_args.cache_dir
)
load_in_4bit = model_args.load_in_4bit
load_in_8bit = model_args.load_in_8bit
load_in_8bit_skip_modules = None
if load_in_8bit or load_in_4bit:
logger.info(f"Quantizing model, load_in_4bit: {load_in_4bit}, load_in_8bit: {load_in_8bit}")
if script_args.modules_to_save is not None:
load_in_8bit_skip_modules = script_args.modules_to_save.split(',')
model = model_class.from_pretrained(
model_args.model_name_or_path,
config=config,
torch_dtype=torch_dtype,
load_in_4bit=load_in_4bit,
load_in_8bit=load_in_8bit,
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
device_map=model_args.device_map,
trust_remote_code=model_args.trust_remote_code,
quantization_config=BitsAndBytesConfig(
load_in_4bit=load_in_4bit,
load_in_8bit=load_in_8bit,
load_in_8bit_skip_modules=load_in_8bit_skip_modules,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
) if script_args.qlora else None,
)
else:
raise ValueError(f"Error, model_name_or_path is None, Continue PT must be loaded from a pre-trained model")
if script_args.use_peft:
logger.info("Fine-tuning method: LoRA(PEFT)")
if script_args.peft_path is not None:
logger.info(f"Peft from pre-trained model: {script_args.peft_path}")
model = PeftModel.from_pretrained(model, script_args.peft_path, is_trainable=True)
else:
logger.info("Init new peft model")
if load_in_8bit or load_in_4bit:
model = prepare_model_for_kbit_training(model, training_args.gradient_checkpointing)
target_modules = script_args.target_modules.split(',') if script_args.target_modules else None
if target_modules and 'all' in target_modules:
target_modules = find_all_linear_names(model, int4=load_in_4bit, int8=load_in_8bit)
modules_to_save = script_args.modules_to_save
if modules_to_save is not None:
modules_to_save = modules_to_save.split(',')
# Resize the embedding layer to match the new tokenizer
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
logger.info(f"Peft target_modules: {target_modules}")
logger.info(f"Peft lora_rank: {script_args.lora_rank}")
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=target_modules,
inference_mode=False,
r=script_args.lora_rank,
lora_alpha=script_args.lora_alpha,
lora_dropout=script_args.lora_dropout,
modules_to_save=modules_to_save)
model = get_peft_model(model, peft_config)
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.float32)
model.print_trainable_parameters()
else:
logger.info("Fine-tuning method: Full parameters training")
# model = model.float()
print_trainable_parameters(model)
# Initialize our Trainer
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
model.config.use_cache = False
else:
model.config.use_cache = True
model.enable_input_require_grads()
if not ddp and torch.cuda.device_count() > 1:
# Keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer = SavePeftModelTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=fault_tolerance_data_collator,
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics
if training_args.do_eval and not is_torch_tpu_available()
else None,
)
# Training
if training_args.do_train:
logger.info("*** Train ***")
logger.debug(f"Train dataloader example: {next(iter(trainer.get_train_dataloader()))}")
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
metrics["train_samples"] = max_train_samples
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
model.config.use_cache = True # enable cache after training
tokenizer.padding_side = "left" # restore padding side
tokenizer.init_kwargs["padding_side"] = "left"
if trainer.is_world_process_zero():
logger.debug(f"Training metrics: {metrics}")
logger.info(f"Saving model checkpoint to {training_args.output_dir}")
if is_deepspeed_zero3_enabled():
save_model_zero3(model, tokenizer, training_args, trainer)
else:
save_model(model, tokenizer, training_args)
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
metrics["eval_samples"] = max_eval_samples
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if trainer.is_world_process_zero():
logger.debug(f"Eval metrics: {metrics}")
if __name__ == "__main__":
main()