-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreport.qmd
executable file
·779 lines (695 loc) · 28.2 KB
/
report.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
---
title: "Northern Fur Seal Movement, Dive Behavior, and Oceanography in the Bering Sea and Pacific Ocean"
execute:
echo: false
warning: false
message: false
format: html
search: false
author:
- id: jml
name:
literal: Josh M. London
email: [email protected]
orcid: 0000-0002-3647-5046
attributes:
corresponding: true
affiliations:
- ref: mml
- id: skh
name:
literal: Stacie M. Koslovsky
email: [email protected]
affiliations:
- ref: mml
- id: ajo
name:
literal: Anthony J. Orr
email: [email protected]
affiliations:
- ref: mml
- id: cek
name:
literal: Carey E. Kuhn
email: [email protected]
affiliations:
- ref: mml
affiliations:
- id: mml
name: AFSC Marine Mammal Laboratory, NOAA Fisheries
address: 7600 Sand Point Way NE
city: Seattle
region: Washington
country: United States
postal-code: 98115
url: https://www.fisheries.noaa.gov/about/marine-mammal-laboratory
---
```{r}
#| include: false
library(dplyr)
library(purrr)
library(fs)
library(tidyr)
library(lubridate)
library(stringr)
library(ggplot2)
library(janitor)
library(readr)
library(googlesheets4)
library(wcUtils)
library(scam)
library(sf)
library(googlesheets4)
library(rdeck)
library(downloadthis)
library(aniMotum)
library(rcartocolor)
r_files <- fs::dir_ls(here::here('R'), glob = "*.R")
purrr::map(r_files, source)
deploy_tbl <- read_rds(here::here('data/deploy_tbl.rds')) |>
dplyr::mutate(deploy_end_date_time_gmt = lubridate::as_date('2023-01-01')) |>
dplyr::mutate(deploy_end_date_time_gmt = dplyr::case_when(
deployid == "SM1369SML_19U3077" ~ lubridate::as_date('2022-11-01'),
deployment_location == "Bogoslof Island" ~ lubridate::as_date('2024-03-01'),
TRUE ~ deploy_end_date_time_gmt
))
```
```{r}
#| include: false
data_list <- get_wc_data(deploy_tbl$deployid)
```
:::{.callout-warning}
The information on this page is automatically updated every hour and without
any significant quality checks. Errors may be present and are likely. We are
providing access to the information in a public forum in the spirit of open
science and to provide easy access to updated information for the authors and
interested researchers.
**The information provided here should not be cited or
referenced in any form**
:::
::: {.column-margin}
Disclaimer
The scientific results and conclusions, as well as any views or opinions
expressed herein, are those of the author(s) and do not necessarily reflect the
views of NMFS, NOAA, or the Department of Commerce.
:::
## Predicted Movements
![](https://images.phylopic.org/images/7ce9ff63-7eec-4fc3-8f37-5f66f9b924a9/thumbnail/192x192.png){style="float: left; padding: 0 10px 0 0;"}
In September 2022 bio-loggers
([SPLASH-F](https://wildlifecomputers.com/our-tags/splash-archiving-tags/splash-f/),
Wildlife Computers[^1], Redmond, Washington) were deployed on adult female northern
fur seals at San Miguel Island, California (n=6) and St. Paul Island, Alaska
(n=6). Then in 2023, additional bio-loggers (n=11) were deployed on adult female
northern fur seals at Bogoslof Island, Alaska. The three maps below provide near real-time predicted
movement paths based on a continuous time correlated random walk model
(via the R package, `aniMotum`). This
movement model uses both Argos and Fastloc GPS derived locations to produce a
predicted path that most-likely represents the actual movement of the fur seal.
Here, the path shown is based on 15 minute predictions. New data
are downloaded, processed, and modeled at least hourly every day.
[^1]: Any reference to specific commercial products, processes, or services by
service mark, trademark, manufacturer, or otherwise, does not constitute or
imply their endorsement, recommendation or favoring by the Department of
Commerce.
The maps below are interactive and can be zoomed in/out using the scroll wheel
on the mouse. The background tiles provide general representation of bathymetric
features but are kept relatively simple so the maps remain responsive and
interactive. Additionally, the solid dots indicate the last known location.
Hovering over a dot will show the deployid and date time associated with that
location.
```{r}
#| include: false
map_proj <- "+proj=lcc +lon_0=-160 +lat_1=33 +lat_2=45 +units=m"
locs <- sf::st_as_sf(data_list$locs,
coords = c("longitude","latitude"),
crs = 4326) %>%
left_join(deploy_tbl) %>%
dplyr::filter(between(date_time,
deploy_date_time_gmt + lubridate::hours(12),
deploy_end_date_time_gmt)) %>%
dplyr::rename(datetime=date_time)
locs <- locs %>%
group_by(deployid) %>%
arrange(datetime, error_radius) %>%
mutate(
rank = 1L,
rank = case_when(duplicated(datetime, fromLast = FALSE) ~
lag(rank) + 1L, TRUE ~ rank)) %>%
dplyr::filter(rank == 1) %>%
arrange(deployid,datetime) %>%
ungroup() %>%
sf::st_transform(map_proj)
locs <- locs |>
dplyr::mutate(
quality = case_when(
type == 'FastGPS' ~ 'G',
type == 'User' ~ 'G',
.default = quality
)
)
locs_fit <- fit_ssm(
x = locs,
vmax = 5,
model = "crw",
time.step = 0.25,
id = "deployid",
date = "datetime",
lc = "quality",
epar = c(
"error_semi_major_axis",
"error_semi_minor_axis",
"error_ellipse_orientation"
),
tz = "UTC"
)
predict_pts_sf <-
grab(locs_fit,
what = "predicted",
as_sf = TRUE,
group = TRUE) |>
rename(deployid = id,
datetime = date) |>
left_join(deploy_tbl)
predict_lines_sf <- predict_pts_sf %>%
group_by(deployid) %>%
summarise(do_union = FALSE) %>%
st_cast("LINESTRING") %>%
left_join(deploy_tbl)
lines_smi <- filter(predict_lines_sf, deployment_location == "San Miguel Island, CA") %>%
sf::st_transform(4326)
lines_stp <- filter(predict_lines_sf, deployment_location == "St. Paul Island, AK") %>%
sf::st_transform(4326)
lines_bogo <- filter(predict_lines_sf, deployment_location == "Bogoslof Island") %>%
sf::st_transform(4326)
smi_init <- st_bbox(lines_smi) %>%
st_as_sfc() %>%
st_buffer(100000)
stp_init <- st_bbox(lines_stp) %>%
st_as_sfc() %>%
st_buffer(100000)
bogo_init <- st_bbox(lines_bogo) %>%
st_as_sfc() %>%
st_buffer(100000)
locs_smi <- filter(predict_pts_sf, deployment_location == "San Miguel Island, CA") %>%
sf::st_transform(4326) %>%
group_by(deployid) %>%
arrange(deployid,datetime) %>%
group_map(~ tail(.x, 1L), .keep=TRUE) %>%
bind_rows()
locs_stp <- filter(predict_pts_sf, deployment_location == "St. Paul Island, AK") %>%
sf::st_transform(4326) %>%
group_by(deployid) %>%
arrange(deployid,datetime) %>%
group_map(~ tail(.x, 1L), .keep=TRUE) %>%
bind_rows()
locs_bogo <- filter(predict_pts_sf, deployment_location == "Bogoslof Island") %>%
sf::st_transform(4326) %>%
group_by(deployid) %>%
arrange(deployid,datetime) %>%
group_map(~ tail(.x, 1L), .keep=TRUE) %>%
bind_rows()
smi_map <- rdeck(map_style = "mapbox://styles/jmlondon/cl9kktfl2000v16pooqw5p2wz",
initial_bounds = smi_init,
controller = TRUE) %>%
add_path_layer(data = lines_smi,
name = "San Miguel",
opacity = 0.8,
get_color = scale_color_category(
col = deployid,
palette = rcartocolor::carto_pal(6,"SunsetDark")
),
wrap_longitude = TRUE,
position_format = "XY",
width_min_pixels = 1.5,
get_path = geometry) %>%
add_scatterplot_layer(data = locs_smi,
name = "San Miguel",
opacity = 1,
get_fill_color = scale_color_category(
col = deployid,
palette = rcartocolor::carto_pal(6,"SunsetDark"),
legend = FALSE
),
wrap_longitude = TRUE,
position_format = "XY",
radius_min_pixels = 4,
get_position = geometry,
pickable = TRUE,
tooltip = c(deployid,datetime))
stp_map <- rdeck(map_style = "mapbox://styles/jmlondon/cl9kktfl2000v16pooqw5p2wz",
initial_bounds = stp_init,
controller = TRUE) %>%
add_path_layer(data = lines_stp,
name = "St. Paul",
opacity = 0.8,
get_color = scale_color_category(
col = deployid,
palette = rcartocolor::carto_pal(6,"BrwnYl")
),
wrap_longitude = TRUE,
position_format = "XY",
width_min_pixels = 1.5,
get_path = geometry) %>%
add_scatterplot_layer(data = locs_stp,
name = "St. Paul",
opacity = 1,
get_fill_color = scale_color_category(
col = deployid,
palette = rcartocolor::carto_pal(6,"BrwnYl"),
legend = FALSE
),
wrap_longitude = TRUE,
position_format = "XY",
radius_min_pixels = 4,
get_position = geometry,
pickable = TRUE,
tooltip = c(deployid,datetime))
bogo_map <- rdeck(map_style = "mapbox://styles/jmlondon/cl9kktfl2000v16pooqw5p2wz",
initial_bounds = bogo_init,
controller = TRUE) %>%
add_path_layer(data = lines_bogo,
name = "Bogoslof",
opacity = 0.8,
get_color = scale_color_category(
col = deployid,
palette = rcartocolor::carto_pal(11,"Prism")
),
wrap_longitude = TRUE,
position_format = "XY",
width_min_pixels = 1.5,
get_path = geometry) %>%
add_scatterplot_layer(data = locs_bogo,
name = "Bogoslof",
opacity = 1,
get_fill_color = scale_color_category(
col = deployid,
palette = rcartocolor::carto_pal(11,"Prism"),
legend = FALSE
),
wrap_longitude = TRUE,
position_format = "XY",
radius_min_pixels = 4,
get_position = geometry,
pickable = TRUE,
tooltip = c(deployid,datetime))
```
::: {.column-page}
```{r}
bogo_map
```
:::
::: {.column-page}
```{r}
#| layout: [[1,1]]
stp_map
smi_map
```
:::
## Dive Behavior
![](https://images.phylopic.org/images/7ce9ff63-7eec-4fc3-8f37-5f66f9b924a9/thumbnail/192x192.png){style="float: left; padding: 0 10px 0 0;"}
The SPLASH-F bio-loggers were programmed with a new option for summarizing dive
behavior. The Argos satellite network has limited bandwidth available for
transmitting data. This, combined with the inherent nature of a marine mammal to
spend considerable time at sea and under water, restricts the amount of
information that can be transmitted. The Empirical Cumulative Distribution (ECD)
of time at depth provides an efficient and flexible data message for summarizing
the proportion of time spent at varying depths during specified time periods.
Unlike previous dive summary messages (e.g. histograms), the depth bins are not
specified in advance. The ECD adjusts to always include the full range of depths
explored during the summary period.
In this study, the ECD summary period was specified at 1 hour. This is the
finest resolution summary period and aligns well with our movement model
prediction interval. However, such resolution comes at a cost. The transmission
buffer on the SPLASH-F is limited to 100 messages and only 2 summary periods are
encoded in a single message (in this study: 2 hours per message). In addition to
ECD messages, the SPLASH-F is also collecting Fastloc GPS data and oceanographic
depth and temperature profiles. Since approximately 25 messages are generated
per day that means the buffer holds about 4 days worth of messages. Fur seals,
spend relatively little time at the surface when at sea and, thus, not all
messages are successfully transmitted. This is apparent in the plots below
where there are open gaps in the timeline representing hours for which no data
is available.
A key objective of this study is to push the limits of transmission so we can
learn from real-world deployments in challenging environments. With this
information we can work with Wildlife Computers to improve the capabilities and
make better informed programming decisions in the future.
```{r}
ecd_data <- data_list$ecdf %>%
dplyr::rename(deployid = deploy_id) %>%
dplyr::arrange(deployid, start) %>%
rowwise() %>%
dplyr::mutate(spline_interp = list(spline_ecdf(full_ecdf, bin.width=5)),
depth50pct = x_pct_depth(full_ecdf,pct_tad = 0.5),
n_dives = if_else(all(is.na(n_dives_shallow),is.na(n_dives_deep)),
NA, mean(c(n_dives_shallow,n_dives_deep), na.rm=TRUE))
) %>%
dplyr::select(c(deployid,start:percent_dry,shallow_ecdf,
deep_ecdf,full_ecdf,spline_interp,depth50pct, n_dives)) %>%
unnest(spline_interp, keep_empty = TRUE) %>%
group_by(deployid, start, end, kind, percent_dry) %>%
dplyr::arrange(deployid, start, depth_break) %>%
dplyr::mutate(propTAD = c(0,diff(ecd_prop)),
minTAD = 60*(1-0.01*percent_dry) * propTAD) %>%
# determine the next depth value
dplyr::mutate(next_depth = dplyr::lead(depth_break)) %>%
# determine previous depth for plotting
dplyr::mutate(prev_depth = dplyr::lag(depth_break)) %>%
dplyr::select(-next_depth) %>%
# transform depths to negative values
dplyr::mutate(depth_break = depth_break * -1,
prev_depth = prev_depth * -1)
ecd_data <- ecd_data %>%
group_by(deployid) %>%
arrange(start)
ecd_data <- ecd_data |>
dplyr::filter(!(between(start,lubridate::ymd_hms('2023-11-22 10:00:00'),
lubridate::ymd_hms('2023-11-22 13:00:00')) &
deployid == '899_19U3097')
)
```
::: {.column-page}
```{r}
#| fig-asp: 1
#| fig-width: 11.75
ecd_data %>%
left_join(deploy_tbl) %>%
dplyr::filter(between(end,deploy_date_time_gmt,deploy_end_date_time_gmt)) %>%
filter(deployment_location == "Bogoslof Island") %>%
ggplot() +
geom_rect(aes(xmin = start, xmax = end,
ymin = 0, ymax = percent_dry/10),
fill = "seashell3") +
geom_rect(aes(xmin = start, xmax = end,
ymin = depth_break, ymax = prev_depth,
fill = propTAD),
color = NA) +
scale_fill_distiller(palette = "Reds",
direction = 1, trans = "log10",
guide = guide_colorbar(
title = 'proportion of time submerged',
title.position = 'bottom',
title.hjust = 0.5,
barwidth = unit(75, units = "mm"),
barheight = unit(2, units = "mm"))) +
facet_grid(deployid ~ .) +
ylab("depth (meters)") +
labs(title = "Bogoslof Island",
subtitle = "each bar represents 1 hour binned at 5m depth increments",
caption = stringr::str_wrap("data derived from the Emperical Cummulative
Distribution (ECD) of time at depth
transmitted via the Argos satellite network")) +
theme_minimal() +
theme(legend.position = "bottom")
```
:::
::: {.column-page}
```{r}
#| layout: [[1,1]]
#| fig-asp: 1.85
#| fig-width: 5.75
ecd_data %>%
left_join(deploy_tbl) %>%
dplyr::filter(between(end,deploy_date_time_gmt,deploy_end_date_time_gmt)) %>%
filter(deployment_location == "St. Paul Island, AK") %>%
ggplot() +
geom_rect(aes(xmin = start, xmax = end,
ymin = 0, ymax = percent_dry/10),
fill = "seashell3") +
geom_rect(aes(xmin = start, xmax = end,
ymin = depth_break, ymax = prev_depth,
fill = propTAD),
color = NA) +
scale_fill_distiller(palette = "Reds",
direction = 1, trans = "log10",
guide = guide_colorbar(
title = 'proportion of time submerged',
title.position = 'bottom',
title.hjust = 0.5,
barwidth = unit(75, units = "mm"),
barheight = unit(2, units = "mm"))) +
facet_grid(deployid ~ .) +
ylab("depth (meters)") +
labs(title = "St Paul Island, AK",
subtitle = "each bar represents 1 hour binned at 5m depth increments",
caption = stringr::str_wrap("data derived from the Emperical Cummulative
Distribution (ECD) of time at depth
transmitted via the Argos satellite network")) +
theme_minimal() +
theme(legend.position = "bottom")
ecd_data %>%
left_join(deploy_tbl) %>%
dplyr::filter(between(end,deploy_date_time_gmt,deploy_end_date_time_gmt)) %>%
filter(deployment_location == "San Miguel Island, CA") %>%
ggplot() +
geom_rect(aes(xmin = start, xmax = end,
ymin = 0, ymax = percent_dry/10),
fill = "seashell3") +
geom_rect(aes(xmin = start, xmax = end,
ymin = depth_break, ymax = prev_depth,
fill = propTAD),
color = NA) +
scale_fill_distiller(palette = "Oranges",
direction = 1, trans = "log10",
guide = guide_colorbar(
title = 'proportion of time submerged',
title.position = 'bottom',
title.hjust = 0.5,
barwidth = unit(75, units = "mm"),
barheight = unit(2, units = "mm"))) +
facet_grid(deployid ~ .) +
theme_minimal() +
ylab("depth (meters)") +
labs(title = "San Miguel Island, CA",
subtitle = " ",
caption = stringr::str_wrap("data derived from the Emperical
Cummulative Distribution (ECD) of time at
depth transmitted via the Argos satellite
network")) +
theme_minimal() +
theme(legend.position = "bottom")
```
:::
## Oceanographic Temperature Profiles
```{r}
pdt_data <- data_list$pdt %>%
group_by(deploy_id,date) %>%
mutate(data_hr = lubridate::round_date(date,unit="hour"),
x1 = data_hr - hours(4),
x2 = data_hr + hours(4)) %>%
dplyr::mutate(next_depth = dplyr::lead(depth)) %>%
# determine previous depth for plotting
dplyr::mutate(prev_depth = dplyr::lag(depth)) %>%
dplyr::select(-next_depth) %>%
# transform depths to negative values
dplyr::mutate(depth = depth * -1,
prev_depth = prev_depth * -1) %>%
ungroup() %>%
left_join(deploy_tbl, by=c("deploy_id" = "deployid")) %>%
dplyr::filter(between(data_hr,deploy_date_time_gmt,deploy_end_date_time_gmt))
```
![](https://images.phylopic.org/images/7ce9ff63-7eec-4fc3-8f37-5f66f9b924a9/thumbnail/192x192.png){style="float: left; padding: 0 10px 0 0;"}
The deployed bio-loggers also have the capability of recording temperature at
depth profiles. Temperature and depth values are collected on dive ascents at 1
Hz and are only created on qualifying dives, and when enabled in the
transmission schedule (in this study, just 2 hours per day, 11 hours apart). If
a dive descends 10% deeper than any previous dive in the current summary period,
then all previous data are cleared, and new temperature-depth data are collected
for the remainder of the current dive.
The temperature is saved at the depths specified in the World Ocean Database
2013 (WOD13). Additionally, the entire range of depths cannot be encoded into a
single Argos message. So, depth ranges from 0-80 meters, 85-425 meters, and
450-1200 meters are encoded in separate messages. Therefore, it's possible to
only receive portions of the complete dive profile.
In the figures below, you'll notice large gaps in time between dive profiles.
This is largely due to the limited window during which the tags were programmed
to collect profiles -- just 2 separate hours per day with 11 hours between them.
::: {.column-page}
```{r}
pdt_nest <- pdt_data %>%
group_by(deploy_id, deployment_location) %>%
nest() %>%
rowwise() %>%
mutate(temp_interp = list(temp_interp(data)))
```
### Bogoslof Island
```{r}
#| layout: [[1,1]]
#| fig-asp: 1.85
#| fig-width: 5.75
pdt_data %>%
filter(depth<0) %>%
filter(deployment_location == "Bogoslof Island") %>%
ggplot() +
geom_rect(aes(xmin = x1, xmax = x2,
ymin = prev_depth, ymax=depth,
fill=max_te), colour=NA) +
scale_fill_distiller(palette = "Spectral",
direction = -1,
guide = guide_colorbar(
title = 'temperature (C)',
title.position = 'bottom',
title.hjust = 0.5,
barwidth = unit(75, units = "mm"),
barheight = unit(2, units = "mm"))) +
facet_grid(deploy_id ~ .) +
ylab("depth (meters)") +
labs(title = "Temperature at Depth (transmitted)",
subtitle = "each bar depicts data from a single upcast as an 8-hour window") +
theme_minimal() +
theme(legend.position = "bottom")
pdt_nest %>%
filter(deployment_location == "Bogoslof Island") %>%
unnest(cols=c(temp_interp)) %>%
ungroup() %>%
select(deploy_id,doy,depth,max_te) %>%
ggplot(aes(x = doy, y = depth))+
geom_raster(aes(fill = max_te), interpolate=TRUE)+
#geom_contour(aes(z = max_te), binwidth = 1, color = "black")+
scale_x_continuous(labels = function(x) parse_date_time(x, orders="j") %>%
format("%b %d"),
name = NULL) +
scale_fill_distiller(palette = "Spectral",
guide = guide_colorbar(
title = 'temperature (C)',
title.position = 'bottom',
title.hjust = 0.5,
barwidth = unit(75, units = "mm"),
barheight = unit(2, units = "mm"))) +
facet_grid(deploy_id ~ .) +
ylab("depth (meters)") +
labs(title = "Temperature at Depth (interpreted)",
subtitle = "temperature values interpreted to regular grid via Akima spline") +
theme_minimal() +
theme(legend.position = "bottom")
```
::: {.panel-tabset}
### St. Paul Island
```{r}
#| layout: [[1,1]]
#| fig-asp: 1.75
#| fig-width: 5.75
pdt_data %>%
filter(depth<0) %>%
filter(deployment_location == "St. Paul Island, AK") %>%
ggplot() +
geom_rect(aes(xmin = x1, xmax = x2,
ymin = prev_depth, ymax=depth,
fill=max_te), colour=NA) +
scale_fill_distiller(palette = "Spectral",
direction = -1,
guide = guide_colorbar(
title = 'temperature (C)',
title.position = 'bottom',
title.hjust = 0.5,
barwidth = unit(75, units = "mm"),
barheight = unit(2, units = "mm"))) +
facet_grid(deploy_id ~ .) +
ylab("depth (meters)") +
labs(title = "Temperature at Depth (transmitted)",
subtitle = "each bar depicts data from a single upcast as an 8-hour window") +
theme_minimal() +
theme(legend.position = "bottom")
pdt_nest %>%
filter(deployment_location == "St. Paul Island, AK") %>%
unnest(cols=c(temp_interp)) %>%
ungroup() %>%
select(deploy_id,doy,depth,max_te) %>%
ggplot(aes(x = doy, y = depth))+
geom_raster(aes(fill = max_te), interpolate=TRUE)+
#geom_contour(aes(z = max_te), binwidth = 1, color = "black")+
scale_x_continuous(labels = function(x) parse_date_time(x, orders="j") %>%
format("%b %d"),
name = NULL) +
scale_fill_distiller(palette = "Spectral",
guide = guide_colorbar(
title = 'temperature (C)',
title.position = 'bottom',
title.hjust = 0.5,
barwidth = unit(75, units = "mm"),
barheight = unit(2, units = "mm"))) +
facet_grid(deploy_id ~ .) +
ylab("depth (meters)") +
labs(title = "Temperature at Depth (interpreted)",
subtitle = "temperature values interpreted to regular grid via Akima spline") +
theme_minimal() +
theme(legend.position = "bottom")
```
### San Miguel Island
```{r}
#| layout: [[1,1]]
#| fig-asp: 1.75
#| fig-width: 5.75
pdt_data %>%
filter(depth<0) %>%
filter(deployment_location == "San Miguel Island, CA") %>%
ggplot() +
geom_rect(aes(xmin = x1, xmax = x2,
ymin = prev_depth, ymax=depth,
fill=max_te), colour=NA) +
scale_fill_distiller(palette = "Spectral",
direction = -1,
guide = guide_colorbar(
title = 'temperature (C)',
title.position = 'bottom',
title.hjust = 0.5,
barwidth = unit(75, units = "mm"),
barheight = unit(2, units = "mm"))) +
facet_grid(deploy_id ~ .) +
ylab("depth (meters)") +
labs(title = "Temperature at Depth (transmitted)",
subtitle = "each bar depicts data from a single upcast as an 8-hour window") +
theme_minimal() +
theme(legend.position = "bottom")
pdt_nest %>%
filter(deployment_location == "San Miguel Island, CA") %>%
unnest(cols=c(temp_interp)) %>%
ungroup() %>%
select(deploy_id,doy,depth,max_te) %>%
ggplot(aes(x = doy, y = depth))+
geom_raster(aes(fill = max_te), interpolate=TRUE)+
#geom_contour(aes(z = max_te), binwidth = 1, color = "black")+
scale_x_continuous(labels = function(x) parse_date_time(x, orders="j") %>%
format("%b %d"),
name = NULL) +
scale_fill_distiller(palette = "Spectral",
guide = guide_colorbar(
title = 'temperature (C)',
title.position = 'bottom',
title.hjust = 0.5,
barwidth = unit(75, units = "mm"),
barheight = unit(2, units = "mm"))) +
facet_grid(deploy_id ~ .) +
ylab("depth (meters)") +
labs(title = "Temperature at Depth (interpreted)",
subtitle = "temperature values interpreted to regular grid via Akima spline") +
theme_minimal() +
theme(legend.position = "bottom")
```
:::
:::
## Project Summary
In 2018, the AFSC Polar Ecosystems Program and Wildlife Computers began
collaboration on a project to develop a new family of SPLASH bio-loggers
that would provide a small footprint device capable of FastLoc GPS,
ocean temperature profiles, and on-board dive behavior summaries that
provide unbiased data and efficient transmission via Argos. Due to the
COVID-19 pandemic, the intended deployments on ribbon and spotted seals
in 2020 were not possible, and in the spring of 2022, only 2 of the 25
devices available were deployed. Instead of letting these devices sit on
the shelf for 2+ years, we have developed a plan to deploy a portion of
them on northern fur seals at San Miguel Island and northern fur seals
at St. Paul Island and Bogoslof Island in Alaska. These tags were originally
funded by the US Navy in 2017.
These tags employ two key enhancements that have not been previously
available:
1. Improved ocean temperature profile capabilities with a dedicated
external thermistor probe
2. On-board processing of time-at-depth data to create a more efficient
dive behavior summary message that relies on empirical cumulative
distributions instead of the typical histogram bin approach used for
decades.
Because relatively few devices with these new capabilities have been
deployed (by MML or other researchers), there is a great need to observe
how these new devices perform, to evaluate how efficient the data
transmissions are, and to learn from real-world experience so future
deployments can be optimized for a range of study questions.