-
-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathspeed_detector.py
153 lines (109 loc) · 4.62 KB
/
speed_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#Importing Libraries
import cv2
import dlib
import time
import math
#Classifier File
carCascade = cv2.CascadeClassifier("vech.xml")
#Video file capture
video = cv2.VideoCapture("carsVideo.mp4")
# Constant Declaration
WIDTH =1280
HEIGHT = 720
#estimate speed function
def estimateSpeed(location1, location2):
d_pixels = math.sqrt(math.pow(location2[0] - location1[0], 2) + math.pow(location2[1] - location1[1], 2))
ppm = 8.8
d_meters = d_pixels / ppm
fps = 18
speed = d_meters * fps * 3.6
return speed
#tracking multiple objects
def trackMultipleObjects():
rectangleColor = (0, 255, 255)
frameCounter = 0
currentCarID = 0
fps = 0
carTracker = {}
carNumbers = {}
carLocation1 = {}
carLocation2 = {}
speed = [None] * 1000
out = cv2.VideoWriter('outTraffic.avi', cv2.VideoWriter_fourcc('M','J','P','G'), 10, (WIDTH, HEIGHT))
while True:
start_time = time.time()
rc, image = video.read()
if type(image) == type(None):
break
image = cv2.resize(image, (WIDTH, HEIGHT))
resultImage = image.copy()
frameCounter = frameCounter + 1
carIDtoDelete = []
for carID in carTracker.keys():
trackingQuality = carTracker[carID].update(image)
if trackingQuality < 7:
carIDtoDelete.append(carID)
for carID in carIDtoDelete:
print("Removing carID " + str(carID) + ' from list of trackers. ')
print("Removing carID " + str(carID) + ' previous location. ')
print("Removing carID " + str(carID) + ' current location. ')
carTracker.pop(carID, None)
carLocation1.pop(carID, None)
carLocation2.pop(carID, None)
if not (frameCounter % 10):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cars = carCascade.detectMultiScale(gray, 1.1, 13, 18, (24, 24))
for (_x, _y, _w, _h) in cars:
x = int(_x)
y = int(_y)
w = int(_w)
h = int(_h)
x_bar = x + 0.5 * w
y_bar = y + 0.5 * h
matchCarID = None
for carID in carTracker.keys():
trackedPosition = carTracker[carID].get_position()
t_x = int(trackedPosition.left())
t_y = int(trackedPosition.top())
t_w = int(trackedPosition.width())
t_h = int(trackedPosition.height())
t_x_bar = t_x + 0.5 * t_w
t_y_bar = t_y + 0.5 * t_h
if ((t_x <= x_bar <= (t_x + t_w)) and (t_y <= y_bar <= (t_y + t_h)) and (x <= t_x_bar <= (x + w)) and (y <= t_y_bar <= (y + h))):
matchCarID = carID
if matchCarID is None:
print(' Creating new tracker' + str(currentCarID))
tracker = dlib.correlation_tracker()
tracker.start_track(image, dlib.rectangle(x, y, x + w, y + h))
carTracker[currentCarID] = tracker
carLocation1[currentCarID] = [x, y, w, h]
currentCarID = currentCarID + 1
for carID in carTracker.keys():
trackedPosition = carTracker[carID].get_position()
t_x = int(trackedPosition.left())
t_y = int(trackedPosition.top())
t_w = int(trackedPosition.width())
t_h = int(trackedPosition.height())
cv2.rectangle(resultImage, (t_x, t_y), (t_x + t_w, t_y + t_h), rectangleColor, 4)
carLocation2[carID] = [t_x, t_y, t_w, t_h]
end_time = time.time()
if not (end_time == start_time):
fps = 1.0/(end_time - start_time)
for i in carLocation1.keys():
if frameCounter % 1 == 0:
[x1, y1, w1, h1] = carLocation1[i]
[x2, y2, w2, h2] = carLocation2[i]
carLocation1[i] = [x2, y2, w2, h2]
if [x1, y1, w1, h1] != [x2, y2, w2, h2]:
if (speed[i] == None or speed[i] == 0) and y1 >= 275 and y1 <= 285:
speed[i] = estimateSpeed([x1, y1, w1, h1], [x1, y2, w2, h2])
if speed[i] != None and y1 >= 180:
cv2.putText(resultImage, str(int(speed[i])) + "km/h", (int(x1 + w1/2), int(y1-5)), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 100) ,2)
cv2.imshow('result', resultImage)
out.write(resultImage)
if cv2.waitKey(1) == 27:
break
cv2.destroyAllWindows()
out.release()
if __name__ == '__main__':
trackMultipleObjects()