-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile
51 lines (41 loc) · 1.54 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
FROM tensorflow/tensorflow:1.13.2-gpu-jupyter
# libcuda.so.1 is not available by default so we add what are probably stubs.
# See https://github.com/tensorflow/tensorflow/issues/25865
# If we leave the stubs linked later, then we get a weird error about CUDA
# versions not matching, so we have to remove it later.
ENV LD_LIBRARY_PATH_OLD="${LD_LIBRARY_PATH}"
ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/usr/local/cuda-10.0/compat"
# Load everything we need to build the custom layer and stuff required by opencv.
RUN apt-get update && apt-get install -y \
build-essential \
cmake \
g++ \
libsm6 \
libxext6 \
libxrender-dev \
&& rm -rf /var/lib/apt/lists/*
# Setup our build paths
RUN mkdir -p /build
COPY custom_layer /build/custom_layer
RUN mkdir -p /build/custom_layer/build
# Compile the new layer
WORKDIR /build/custom_layer/build
RUN cmake -D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda ..
RUN make -j
# Install the python requirements.
COPY requirements.txt /
RUN pip install -r /requirements.txt
# Copy in the full repo.
COPY . /bts
WORKDIR /bts
# Put the new layer we built into /bts/custom_layer
RUN cp -r /build/custom_layer/build custom_layer/.
# Download the model locally.
RUN mkdir -p models \
&& python utils/download_from_gdrive.py 1ipme-fkV4pIx87sOs31R9CD_Qg-85__h models/bts_nyu.zip \
&& cd models \
&& unzip bts_nyu.zip
# Set the path back to avoid error (see above).
ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH_OLD}"
# Add relevant paths to the PYTHONPATH so they can be imported from anywhere.
ENV PYTHONPATH=/bts:/bts/models/bts_nyu