-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
40 lines (33 loc) · 1.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/usr/bin/env python3
"""
Utils file containing functions mapping text and audio to features.
"""
from typing import List
import numpy as np
import spacy
from surfboard.sound import Waveform
nlp = spacy.load('en_core_web_sm')
def text_to_features(text: str) -> np.ndarray:
"""Uses spacy to extract word vectors for every word in the input
text. Averages those word vectors.
Args:
text (str): A string input sentence or document.
Returns:
np.ndarray: The averaged word vectors for every word in the
sentence.
"""
split_text: List[str] = text.split()
word_vectors: List[np.ndarray] = [nlp(word).vector for word in split_text]
return np.mean(word_vectors, 0)
def audio_to_features(audio: np.ndarray, sample_rate: int=44100):
"""Uses Surfboard to extract 13 averaged MFCCs over time.
First load the waveform, then extract features.
Args:
audio (np.ndarray): The 1D waveform.
sample_rate (int): The sample rate of the waveform.
Returns:
np.ndarray: The extracted audio features.
"""
waveform: Waveform = Waveform(signal=audio, sample_rate=sample_rate)
averaged_mfccs: np.ndarray = waveform.mfcc().mean(0)
return averaged_mfccs