-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vietocr.py
50 lines (44 loc) · 1.51 KB
/
train_vietocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import matplotlib.pyplot as plt
from PIL import Image
from vietocr.vietocr.tool.config import Cfg
from vietocr.vietocr.model.trainer import Trainer
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, default='data/')
parser.add_argument('--device', type=str, default='cuda:0', help='cuda:0 or cpu')
parser.add_argument('--pretrained', action='store_true',
default=False, help='Train from pretrained model')
args = parser.parse_args()
return args
def main():
args = parse_args()
data_path = args.data_path
device = args.device
pretrained = args.pretrained
config = Cfg.load_config_from_name('vgg_seq2seq')
dataset_params = {
'name':'hw',
'data_root':data_path,
'train_annotation':'train_annotation.txt',
'valid_annotation':'val_annotation.txt',
'image_height':128,
}
params = {
'print_every':100,
'valid_every':15*100,
'iters':15000,
'checkpoint':'./checkpoint/transformerocr_checkpoint.pth',
'export':'./weights/transformerocr.pth',
'metrics': 10000,
'batch_size': 16
}
config['trainer'].update(params)
config['dataset'].update(dataset_params)
config['device'] = device
trainer = Trainer(config, pretrained=pretrained)
trainer.config.save('config.yml')
trainer.train()
print(trainer.precision())
if __name__ == "__main__":
main()