-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinference.py
132 lines (107 loc) · 4.84 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python3
"""
Copyright (c) 2018 Intel Corporation.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import os
import sys
import logging as log
from openvino.inference_engine import IENetwork, IECore
class Network:
"""
Load and configure inference plugins for the specified target devices
and performs synchronous and asynchronous modes for the specified infer requests.
"""
def __init__(self):
self.plugin = None
self.network = None
self.input_blob = None
self.output_blob = None
self.exec_network = None
self.infer_request = None
def load_model(self, model, device="CPU", cpu_extension=None, num_requests=0):
'''
Load the model given IR files.
Defaults to CPU as device for use in the workspace.
Synchronous requests made within.
'''
model_xml = model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
# Initialize the plugin
self.plugin = IECore()
# To-do:
# Add a CPU extension, if applicable
if cpu_extension and "CPU" in device:
self.plugin.add_extension(cpu_extension, device)
log.info("CPU extension loaded: {}".format(cpu_extension))
# Read the IR as a IENetwork
try:
self.network = IENetwork(model=model_xml, weights=model_bin)
except Exception as e:
raise ValueError("Could not Initialise the network. Have you enterred the correct model path?")
# Check Network layer support
if "CPU" in device:
supported_layers = self.plugin.query_network(self.network, "CPU")
not_supported_layers = [l for l in self.network.layers.keys() if l not in supported_layers]
if len(not_supported_layers) != 0:
log.error("Following layers are not supported by the plugin for specified device {}:\n {}".
format(device, ', '.join(not_supported_layers)))
log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l "
"or --cpu_extension command line argument")
sys.exit(1)
# Load the IENetwork into the plugin
self.exec_network = self.plugin.load_network(self.network, device, num_requests=num_requests)
# Get the input layer
self.input_blob = next(iter(self.network.inputs))
self.output_blob = next(iter(self.network.outputs))
return
def get_input_shape(self):
'''
Gets the input shape of the network
'''
return self.network.inputs[self.input_blob].shape
def get_output_name(self):
'''
Gets the input shape of the network
'''
output_name, _ = "", self.network.outputs[next(iter(self.network.outputs.keys()))]
for output_key in self.network.outputs:
if self.network.layers[output_key].type == "DetectionOutput":
output_name, _ = output_key, self.network.outputs[output_key]
if output_name == "":
log.error("Can't find a DetectionOutput layer in the topology")
exit(-1)
return output_name
def exec_net(self, image, request_id):
'''
Makes an asynchronous inference request, given an input image.
'''
self.exec_network.start_async(request_id=request_id,
inputs={self.input_blob: image})
return
def wait(self, request_id):
'''
Checks the status of the inference request.
'''
status = self.exec_network.requests[request_id].wait(-1)
return status
def get_output(self, request_id):
'''
Returns a list of the results for the output layer of the network.
'''
return self.exec_network.requests[request_id].outputs[self.output_blob]