From 5ac9ac54dd212f949bb59d15c91d6d1ae83f01e3 Mon Sep 17 00:00:00 2001 From: Tao Wang Date: Sun, 22 Oct 2023 16:40:36 -0400 Subject: [PATCH] taylor wip --- example/taylor_expansion.jl | 48 +++-- src/FeynmanDiagram.jl | 16 +- src/TaylorSeries/TaylorSeries.jl | 4 +- src/TaylorSeries/arithmetic.jl | 20 +- src/TaylorSeries/print.jl | 34 ++- src/computational_graph/ComputationalGraph.jl | 2 +- src/computational_graph/operation.jl | 172 --------------- src/utility.jl | 200 ++++++++++++++++++ test/taylor.jl | 3 +- 9 files changed, 294 insertions(+), 205 deletions(-) create mode 100644 src/utility.jl diff --git a/example/taylor_expansion.jl b/example/taylor_expansion.jl index 33abe727..c198f5ac 100644 --- a/example/taylor_expansion.jl +++ b/example/taylor_expansion.jl @@ -1,37 +1,47 @@ using FeynmanDiagram using FeynmanDiagram.ComputationalGraphs: - eval!, forwardAD, node_derivative, backAD, build_all_leaf_derivative, Leaves, taylorexpansion!, count_operation, build_derivative_backAD! + eval!, forwardAD, node_derivative, backAD, build_all_leaf_derivative, count_operation +using FeynmanDiagram.Utility: + taylorexpansion!, build_derivative_backAD! g1 = Graph([]) g2 = Graph([]) g3 = Graph([]) #, factor=2.0) +g4 = Graph([]) +g5 = Graph([]) +g6 = Graph([]) G3 = g1 G4 = 1.0 * g1 * g1 G5 = 1.0 * (3.0 * G3 + 0.5 * G4) #G6 = (0.5 * g1 * g2 + 0.5 * g2 * g3) -G6 = (g1 + g2) * (0.5 * g1 + g3) * g1 # (0.5 * g1 + g3) -#G6 = (1.0 * g1 + 0.5 * g2) * (1.5 * g1 + g3) +#G6 = (g1 + g2) * (0.5 * g1 + g3) * g1 # (0.5 * g1 + g3) +#G6 = g1 * g2 * g3 * g4 * g5 * g6 +G6 = (1.0 * g1 + 2.0 * g2) * (g1 + g3) #G6 = 1.5 * g1*g1 + 0.5 * g2 * 1.5 * g1 + 0.5*g2*g3 using FeynmanDiagram.Taylor: TaylorSeries, getcoeff, set_variables -set_variables("x y", order=6) + +# set_variables("x y", order=3) +# @time T5 = taylorexpansion!(G5) +# print(T5) +set_variables("x", order=3) @time T5 = taylorexpansion!(G6) -order = [0, 3] -@time print(T5.coeffs[order]) -# print("$(count_operation(T5.coeffs))\n") -# for (order, coeff) in (T5.coeffs) -# #gs = Compilers.to_julia_str([coeff,], name="eval_graph!") -# #println("$(order) ", gs, "\n") -# print("$(order) $(eval!(coeff)) $(count_operation(coeff))\n") -# end +#order = [0, 0, 0, 0, 0, 0] +#@time print(T5.coeffs[order]) +print("$(count_operation(T5.coeffs))\n") +for (order, coeff) in (T5.coeffs) + #gs = Compilers.to_julia_str([coeff,], name="eval_graph!") + #println("$(order) ", gs, "\n") + print("$(order) $(eval!(coeff)) $(eval!(getcoeff(T5,order))) $(coeff.id) $(count_operation(coeff))\n") +end -# @time T5_compare = build_derivative_backAD!(G6) -# print("$(count_operation(T5_compare.coeffs))\n") -# for (order, coeff) in (T5_compare.coeffs) -# #gs = Compilers.to_julia_str([coeff,], name="eval_graph!") -# #println("$(order) ", gs, "\n") -# print("$(order) $(eval!(coeff)) $(eval!(T5.coeffs[order])) $(count_operation(coeff))\n") -# end +@time T5_compare = build_derivative_backAD!(G6) +print("$(count_operation(T5_compare.coeffs))\n") +for (order, coeff) in (T5_compare.coeffs) + gs = Compilers.to_julia_str([coeff,], name="eval_graph!") + println("$(order) ", gs, "\n") + print("$(order) $(eval!(coeff)) $(eval!(getderivative(T5,order))) $(count_operation(coeff))\n") +end diff --git a/src/FeynmanDiagram.jl b/src/FeynmanDiagram.jl index 81ea15ed..26a6db4f 100644 --- a/src/FeynmanDiagram.jl +++ b/src/FeynmanDiagram.jl @@ -98,10 +98,7 @@ export fermionic_annihilation, fermionic_creation, majorana export bosonic_annihilation, bosonic_creation, real_classic export correlator_order, normal_order -include("TaylorSeries/TaylorSeries.jl") -using .Taylor -export Taylor -export TaylorSeries, set_variables + include("computational_graph/ComputationalGraph.jl") @@ -128,6 +125,12 @@ export relabel, standardize_labels, replace_subgraph, merge_linear_combination, export optimize!, optimize, merge_all_chains!, merge_all_linear_combinations!, remove_duplicated_leaves! +include("TaylorSeries/TaylorSeries.jl") +using .Taylor +export Taylor +export TaylorSeries, set_variables, taylor_factorial, getcoeff, getderivative + + include("backend/compiler.jl") using .Compilers export Compilers @@ -175,7 +178,10 @@ export addpropagator!, addnode! export setroot!, addroot! export evalNaive, showTree - +include("utility.jl") +using .Utility +export Utility +export taylorexpansion!, build_derivative_backAD! ##################### precompile ####################### # precompile as the final step of the module definition: if ccall(:jl_generating_output, Cint, ()) == 1 # if we're precompiling the package diff --git a/src/TaylorSeries/TaylorSeries.jl b/src/TaylorSeries/TaylorSeries.jl index 7d563861..5fb84015 100644 --- a/src/TaylorSeries/TaylorSeries.jl +++ b/src/TaylorSeries/TaylorSeries.jl @@ -9,7 +9,7 @@ see also [`HomogeneousPolynomial`](@ref). """ module Taylor - +using ..ComputationalGraphs #using Markdown @@ -26,7 +26,7 @@ export get_order, get_numvars, get_variable_names, get_variable_symbols, # jacobian, hessian, jacobian!, hessian!, displayBigO, use_show_default, - getcoeff + getcoeff, getderivative, taylor_factorial # function __init__() # @static if !isdefined(Base, :get_extension) # @require IntervalArithmetic = "d1acc4aa-44c8-5952-acd4-ba5d80a2a253" begin diff --git a/src/TaylorSeries/arithmetic.jl b/src/TaylorSeries/arithmetic.jl index a5ed1994..08924aad 100644 --- a/src/TaylorSeries/arithmetic.jl +++ b/src/TaylorSeries/arithmetic.jl @@ -145,11 +145,13 @@ function Base.:*(g1::TaylorSeries{T}, g2::TaylorSeries{T}) where {T} for (order2, coeff2) in g2.coeffs order = order1 + order2 if sum(order) <= _params_Taylor_.order - combination_coeff = taylor_binomial(order1, order2) + #combination_coeff = taylor_binomial(order1, order2) if haskey(g.coeffs, order) - g.coeffs[order] += combination_coeff * coeff1 * coeff2 + #g.coeffs[order] += combination_coeff * coeff1 * coeff2 + g.coeffs[order] += coeff1 * coeff2 else - g.coeffs[order] = combination_coeff * coeff1 * coeff2 + #g.coeffs[order] = combination_coeff * coeff1 * coeff2 + g.coeffs[order] = coeff1 * coeff2 end end end @@ -164,7 +166,17 @@ end function getcoeff(g::TaylorSeries, order::Array{Int,1}) if haskey(g.coeffs, order) - return 1 / taylor_factorial(order) * g.coeffs[order] + return g.coeffs[order] + #return 1 / taylor_factorial(order) * g.coeffs[order] + else + return nothing + end +end + +function getderivative(g::TaylorSeries, order::Array{Int,1}) + if haskey(g.coeffs, order) + #return g.coeffs[order] + return taylor_factorial(order) * g.coeffs[order] else return nothing end diff --git a/src/TaylorSeries/print.jl b/src/TaylorSeries/print.jl index 24c203da..83227b3a 100644 --- a/src/TaylorSeries/print.jl +++ b/src/TaylorSeries/print.jl @@ -164,7 +164,39 @@ function homogPol2str(a::TaylorSeries{T}) where {T<:Number} end @inbounds c = coeff iszero(c) && continue - cadena = numbr2str(c / factor, ifirst) + #cadena = numbr2str(c / factor, ifirst) + cadena = numbr2str(c, ifirst) + strout = string(strout, cadena, monom, space) + ifirst = false + end + return strout[1:prevind(strout, end)] +end + +function homogPol2str(a::TaylorSeries{T}) where {T<:AbstractGraph} + numVars = get_numvars() + #z = zero(a.coeffs[1]) + space = string(" ") + strout::String = space + ifirst = true + for (order, coeff) in a.coeffs + monom::String = string("") + factor = 1 + for ivar = 1:numVars + powivar = order[ivar] + if powivar == 1 + monom = string(monom, name_taylorvar(ivar)) + elseif powivar > 1 + monom = string(monom, name_taylorvar(ivar), superscriptify(powivar)) + factor *= factorial(powivar) + end + end + c = coeff + if ifirst + cadena = "g$(coeff.id)" + ifirst = false + else + cadena = "+ g$(coeff.id)" + end strout = string(strout, cadena, monom, space) ifirst = false end diff --git a/src/computational_graph/ComputationalGraph.jl b/src/computational_graph/ComputationalGraph.jl index 4f80c2fc..355cbcab 100644 --- a/src/computational_graph/ComputationalGraph.jl +++ b/src/computational_graph/ComputationalGraph.jl @@ -3,7 +3,7 @@ module ComputationalGraphs using AbstractTrees using StaticArrays using Printf, PyCall, DataFrames -using ..Taylor +#using ..Taylor macro todo() return :(error("Not yet implemented!")) end diff --git a/src/computational_graph/operation.jl b/src/computational_graph/operation.jl index 3436747c..a7b8f85a 100644 --- a/src/computational_graph/operation.jl +++ b/src/computational_graph/operation.jl @@ -325,109 +325,8 @@ function build_all_leaf_derivative(diag::Graph{F,W}, maxorder=Inf) where {F,W} return result, chainrule_map end -function build_derivative_backAD!(g::G, leaftaylor::Dict{Int,TaylorSeries{G}}=Dict{Int,TaylorSeries{G}}()) where {G<:Graph} - chainrule_map_leaf = Dict{Int,Dict{Int,G}}() - for leaf in Leaves(g) - if !haskey(leaftaylor, leaf.id) - leaftaylor[leaf.id] = graph_to_taylor_withmap!(leaf; chainrule_map_leaf=chainrule_map_leaf) - end - end - leafAD, chainrule_map = build_all_leaf_derivative(g) - current_func = Dict(zeros(Int, get_numvars()) => g) - - result = TaylorSeries{G}() - result.coeffs[zeros(Int, get_numvars())] = g - for i in 1:get_order() - new_func = Dict{Array{Int,1},G}() - for (order, func) in current_func - for idx in 1:get_numvars() - ordernew = copy(order) - ordernew[idx] += 1 - if !haskey(result.coeffs, ordernew) - funcAD = forwardAD_taylor(func, idx, chainrule_map, chainrule_map_leaf, leaftaylor) - if !isnothing(funcAD) - new_func[ordernew] = funcAD - result.coeffs[ordernew] = funcAD - end - end - end - end - current_func = new_func - end - return result -end -function forwardAD_taylor(g::G, varidx::Int, chainrule_map::Dict{Int,Array{G,1}}, chainrule_map_leaf::Dict{Int,Dict{Int,G}}, leaftaylor::Dict{Int,TaylorSeries{G}}) where {G<:Graph} - if haskey(chainrule_map, g.id) - return chainrule!(varidx, chainrule_map[g.id], leaftaylor) - elseif haskey(chainrule_map_leaf, g.id) - #if haskey(chainrule_map_leaf, g.id) - map = chainrule_map_leaf[g.id] - if haskey(map, varidx) - return map[varidx] - else - return nothing - end - elseif g.operator == Sum - children = Array{G,1}() - for graph in g.subgraphs - dgraph = forwardAD_taylor(graph, varidx, chainrule_map, chainrule_map_leaf, leaftaylor) - if !isnothing(dgraph) - push!(children, dgraph) - end - end - if isempty(children) - return nothing - else - return linear_combination(children, g.subgraph_factors) - end - elseif g.operator == Prod - children = Array{G,1}() - for (i, graph) in enumerate(g.subgraphs) - dgraph = forwardAD_taylor(graph, varidx, chainrule_map, chainrule_map_leaf, leaftaylor) - if !isnothing(dgraph) - subgraphs = [j == i ? dgraph : subg for (j, subg) in enumerate(g.subgraphs)] - push!(children, Graph(subgraphs; operator=Prod(), subgraph_factors=g.subgraph_factors)) - end - end - if isempty(children) - return nothing - else - return linear_combination(children) - end - elseif g.operator <: Power - dgraph = forwardAD_taylor(g.subgraphs[1], varidx, chainrule_map, chainrule_map_leaf, leaftaylor) - if isnothing(dgraph) - return nothing - else - power = eltype(g.operator) - if power == 1 - return dgraph - else - return dgraph * Graph(g.subgraphs; subgraph_factors=power * g.subgraph_factors, operator=decrement_power(g.operator)) - end - end - end -end - -function chainrule!(varidx::Int, dg::Array{G,1}, leaftaylor::Dict{Int,TaylorSeries{G}}) where {G<:Graph} - children = Array{G,1}() - order = zeros(Int, get_numvars()) - order[varidx] += 1 - for i in 1:length(dg)÷2 - taylor = leaftaylor[dg[2*i-1].id] - if haskey(taylor.coeffs, order) - coeff = taylor.coeffs[order] - push!(children, coeff * dg[2*i]) - end - end - if isempty(children) - return nothing - else - return linear_combination(children) - end -end function insert_dualDict!(dict_kv::Dict{Tk,Tv}, dict_vk::Dict{Tv,Tk}, key::Tk, value::Tv) where {Tk,Tv} @@ -644,74 +543,3 @@ function build_derivative_graph(graph::G, orders::NTuple{N,Int}; return build_derivative_graph([graph], orders; nodes_id=nodes_id) end -function graph_to_taylor(graph::G, varidx::Array{Int,1}=collect(1:get_numvars())) where {G<:Graph} - @assert isleaf(graph) - maxorder = get_order() - ordtuple = ((idx in varidx) ? (0:maxorder) : (0:0) for idx in 1:get_numvars()) - result = TaylorSeries{G}() - for order in collect(Iterators.product(ordtuple...)) #varidx specifies the variables graph depends on. Iterate over all taylor coefficients of those variables. - o = collect(order) - if sum(o) <= get_order() - coeff = Graph([]; operator=Sum(), factor=graph.factor) - result.coeffs[o] = coeff - end - end - return result -end - - -function graph_to_taylor_withmap!(g::G; varidx::Array{Int,1}=collect(1:get_numvars()), chainrule_map_leaf::Dict{Int,Dict{Int,G}}=Dict{Int,Dict{Int,G}}()) where {G<:Graph} - @assert isleaf(g) - maxorder = get_order() - current_func = Dict(zeros(Int, get_numvars()) => g) - result = TaylorSeries{G}() - result.coeffs[zeros(Int, get_numvars())] = g - - for i in 1:get_order() - new_func = Dict{Array{Int,1},G}() - for (order, func) in current_func - if !haskey(chainrule_map_leaf, func.id) - chainrule_map_leaf[func.id] = Dict{Int,G}() - end - for idx in varidx - ordernew = copy(order) - ordernew[idx] += 1 - if !haskey(result.coeffs, ordernew) - funcAD = Graph([]; operator=Sum(), factor=g.factor) - new_func[ordernew] = funcAD - result.coeffs[ordernew] = funcAD - chainrule_map_leaf[func.id][idx] = funcAD - else - chainrule_map_leaf[func.id][idx] = result.coeffs[ordernew] - end - end - end - current_func = new_func - end - - return result -end - -@inline apply(::Type{Sum}, diags::Vector{T}, factors::Vector{F}) where {T<:TaylorSeries,F<:Number} = sum(d * f for (d, f) in zip(diags, factors)) -@inline apply(::Type{Prod}, diags::Vector{T}, factors::Vector{F}) where {T<:TaylorSeries,F<:Number} = prod(d * f for (d, f) in zip(diags, factors)) -@inline apply(::Type{Power{N}}, diags::Vector{T}, factors::Vector{F}) where {N,T<:TaylorSeries,F<:Number} = (diags[1])^N * factors[1] - -function taylorexpansion!(graph::G, taylormap::Dict{Int,T}=Dict{Int,TaylorSeries{G}}()) where {G<:Graph,T<:TaylorSeries} - if isempty(taylormap) - for g in Leaves(graph) - if !haskey(taylormap, g.id) - #taylormap[g.id] = graph_to_taylor(g) - taylormap[g.id] = graph_to_taylor_withmap!(g) - end - end - end - rootid = -1 - for g in PostOrderDFS(graph) # postorder traversal will visit all subdiagrams of a diagram first - rootid = g.id - if isleaf(g) || haskey(taylormap, g.id) - continue - end - taylormap[g.id] = apply(g.operator, [taylormap[sub.id] for sub in g.subgraphs], g.subgraph_factors) - end - return taylormap[rootid] -end \ No newline at end of file diff --git a/src/utility.jl b/src/utility.jl new file mode 100644 index 00000000..031232c5 --- /dev/null +++ b/src/utility.jl @@ -0,0 +1,200 @@ +module Utility +using ..ComputationalGraphs +using ..ComputationalGraphs: Sum, Prod, Power +using ..ComputationalGraphs: build_all_leaf_derivative, eval! +using ..ComputationalGraphs.AbstractTrees +using ..Taylor + + +""" + function graph_to_taylor(graph::G, varidx::Array{Int,1}=collect(1:get_numvars())) where {G<:Graph} +""" +function graph_to_taylor(graph::G, varidx::Array{Int,1}=collect(1:get_numvars())) where {G<:Graph} + @assert isleaf(graph) + maxorder = get_order() + ordtuple = ((idx in varidx) ? (0:maxorder) : (0:0) for idx in 1:get_numvars()) + result = TaylorSeries{G}() + for order in collect(Iterators.product(ordtuple...)) #varidx specifies the variables graph depends on. Iterate over all taylor coefficients of those variables. + o = collect(order) + if sum(o) <= get_order() + coeff = Graph([]; operator=Sum(), factor=graph.factor) + result.coeffs[o] = coeff + end + end + return result +end + + +function graph_to_taylor_withmap!(g::G; coeffmode=true, varidx::Array{Int,1}=collect(1:get_numvars()), chainrule_map_leaf::Dict{Int,Dict{Int,G}}=Dict{Int,Dict{Int,G}}()) where {G<:Graph} + @assert isleaf(g) + maxorder = get_order() + current_func = Dict(zeros(Int, get_numvars()) => g) + result = TaylorSeries{G}() + result.coeffs[zeros(Int, get_numvars())] = g + + for i in 1:get_order() + new_func = Dict{Array{Int,1},G}() + for (order, func) in current_func + if !haskey(chainrule_map_leaf, func.id) + chainrule_map_leaf[func.id] = Dict{Int,G}() + end + for idx in varidx + ordernew = copy(order) + ordernew[idx] += 1 + if !haskey(result.coeffs, ordernew) + if coeffmode + funcAD = Graph([]; operator=Sum(), factor=g.factor) + else + #funcAD = taylor_factorial(ordernew) * Graph([]; operator=Sum(), factor=g.factor) + funcAD = Graph([]; operator=Sum(), factor=taylor_factorial(ordernew) * g.factor) + end + new_func[ordernew] = funcAD + result.coeffs[ordernew] = funcAD + chainrule_map_leaf[func.id][idx] = funcAD + else + chainrule_map_leaf[func.id][idx] = result.coeffs[ordernew] + end + end + end + current_func = new_func + end + + return result +end + +@inline apply(::Type{Sum}, diags::Vector{T}, factors::Vector{F}) where {T<:TaylorSeries,F<:Number} = sum(d * f for (d, f) in zip(diags, factors)) +@inline apply(::Type{Prod}, diags::Vector{T}, factors::Vector{F}) where {T<:TaylorSeries,F<:Number} = prod(d * f for (d, f) in zip(diags, factors)) +@inline apply(::Type{Power{N}}, diags::Vector{T}, factors::Vector{F}) where {N,T<:TaylorSeries,F<:Number} = (diags[1])^N * factors[1] + +function taylorexpansion!(graph::G, taylormap::Dict{Int,T}=Dict{Int,TaylorSeries{G}}()) where {G<:Graph,T<:TaylorSeries} + if isempty(taylormap) + for g in Leaves(graph) + if !haskey(taylormap, g.id) + #taylormap[g.id] = graph_to_taylor(g) + taylormap[g.id] = graph_to_taylor_withmap!(g) + end + end + end + rootid = -1 + for g in PostOrderDFS(graph) # postorder traversal will visit all subdiagrams of a diagram first + rootid = g.id + if isleaf(g) || haskey(taylormap, g.id) + continue + end + taylormap[g.id] = apply(g.operator, [taylormap[sub.id] for sub in g.subgraphs], g.subgraph_factors) + end + return taylormap[rootid] +end + +function build_derivative_backAD!(g::G, leaftaylor::Dict{Int,TaylorSeries{G}}=Dict{Int,TaylorSeries{G}}()) where {G<:Graph} + chainrule_map_leaf = Dict{Int,Dict{Int,G}}() + for leaf in Leaves(g) + if !haskey(leaftaylor, leaf.id) + leaftaylor[leaf.id] = graph_to_taylor_withmap!(leaf; coeffmode=false, chainrule_map_leaf=chainrule_map_leaf) + end + end + for (i, leaf) in chainrule_map_leaf + for (j, coeff) in leaf + print("test $(i) $(j) $(coeff) $(eval!(coeff))\n") + end + print("\n") + end + leafAD, chainrule_map = build_all_leaf_derivative(g) + current_func = Dict(zeros(Int, get_numvars()) => g) + + result = TaylorSeries{G}() + result.coeffs[zeros(Int, get_numvars())] = g + for i in 1:get_order() + new_func = Dict{Array{Int,1},G}() + for (order, func) in current_func + for idx in 1:get_numvars() + ordernew = copy(order) + ordernew[idx] += 1 + if !haskey(result.coeffs, ordernew) + funcAD = forwardAD_taylor(func, idx, chainrule_map, chainrule_map_leaf, leaftaylor) + if !isnothing(funcAD) + new_func[ordernew] = funcAD + result.coeffs[ordernew] = funcAD + end + end + end + end + current_func = new_func + end + return result +end + + +function forwardAD_taylor(g::G, varidx::Int, chainrule_map::Dict{Int,Array{G,1}}, chainrule_map_leaf::Dict{Int,Dict{Int,G}}, leaftaylor::Dict{Int,TaylorSeries{G}}) where {G<:Graph} + # if haskey(chainrule_map, g.id) + # return chainrule!(varidx, chainrule_map[g.id], leaftaylor) + # elseif haskey(chainrule_map_leaf, g.id) + if haskey(chainrule_map_leaf, g.id) + map = chainrule_map_leaf[g.id] + if haskey(map, varidx) + return map[varidx] + else + return nothing + end + elseif g.operator == Sum + children = Array{G,1}() + for graph in g.subgraphs + dgraph = forwardAD_taylor(graph, varidx, chainrule_map, chainrule_map_leaf, leaftaylor) + if !isnothing(dgraph) + push!(children, dgraph) + end + end + if isempty(children) + return nothing + else + return linear_combination(children, g.subgraph_factors) + end + elseif g.operator == Prod + children = Array{G,1}() + for (i, graph) in enumerate(g.subgraphs) + dgraph = forwardAD_taylor(graph, varidx, chainrule_map, chainrule_map_leaf, leaftaylor) + if !isnothing(dgraph) + subgraphs = [j == i ? dgraph : subg for (j, subg) in enumerate(g.subgraphs)] + push!(children, Graph(subgraphs; operator=Prod(), subgraph_factors=g.subgraph_factors)) + end + end + if isempty(children) + return nothing + else + return linear_combination(children) + end + elseif g.operator <: Power + + dgraph = forwardAD_taylor(g.subgraphs[1], varidx, chainrule_map, chainrule_map_leaf, leaftaylor) + if isnothing(dgraph) + return nothing + else + power = eltype(g.operator) + if power == 1 + return dgraph + else + return dgraph * Graph(g.subgraphs; subgraph_factors=power * g.subgraph_factors, operator=decrement_power(g.operator)) + end + end + end +end + +function chainrule!(varidx::Int, dg::Array{G,1}, leaftaylor::Dict{Int,TaylorSeries{G}}) where {G<:Graph} + children = Array{G,1}() + order = zeros(Int, get_numvars()) + order[varidx] += 1 + for i in 1:length(dg)÷2 + taylor = leaftaylor[dg[2*i-1].id] + if haskey(taylor.coeffs, order) + coeff = taylor.coeffs[order] + push!(children, coeff * dg[2*i]) + end + end + if isempty(children) + return nothing + else + return linear_combination(children) + end +end + +end \ No newline at end of file diff --git a/test/taylor.jl b/test/taylor.jl index cfc122b3..f7acb68f 100644 --- a/test/taylor.jl +++ b/test/taylor.jl @@ -5,6 +5,7 @@ using FeynmanDiagram: Taylor as Taylor getcoeff a, b, c, d, e = set_variables("a b c d e", order=3) F1 = (a + b) * (a + b) * (a + b) + print("$(F1)") @test getcoeff(F1, [2, 1, 0, 0, 0]) == 3.0 @test getcoeff(F1, [1, 2, 0, 0, 0]) == 3.0 @test getcoeff(F1, [3, 0, 0, 0, 0]) == 1.0 @@ -19,5 +20,5 @@ using FeynmanDiagram: Taylor as Taylor @test getcoeff(F1, [1, 2, 0, 0, 0]) == 3.0 @test getcoeff(F1, [3, 0, 0, 0, 0]) == 1.0 @test getcoeff(F1, [0, 3, 0, 0, 0]) == 1.0 - print("$(F1)") + end \ No newline at end of file