diff --git a/README.md b/README.md index 7a5c3c88..86991a36 100644 --- a/README.md +++ b/README.md @@ -90,21 +90,21 @@ julia> dict_sigma = taylorAD(sigmadf.diagram, renormalization_orders, leaf_dep_f The Back End architecture enables the compiler to output source code in a range of other programming languages and machine learning frameworks. The example code below demonstrates how to use the `Compilers` to generate the source code for the self-energy diagrams in Julia, C, and Python. ```julia -#Access the two-loop self-energy data for the configuration with 1st-order Green's function counterterms and 1st-order interaction counterterms. -julia> g_o211 = dict_sigma[[2,1,1]]; +# Access the self-energy data for the configuration with 2nd-order Green's function counterterms and 1st-order interaction counterterms. +julia> g_o21 = dict_sigma[[2,1]]; # Compile the selected self-energy into a Julia RuntimeGeneratedFunction `func` and a `leafmap`. # The `leafmap` associates vector indices of leaf values with their corresponding leaves (propagators and interactions). -julia> func, leafmap = Compilers.compile(g_o211); +julia> func, leafmap = Compilers.compile(g_o21); # Export the self-energy's source code to a Julia file. -julia> Compilers.compile_Julia(g_o211, "func_g211.jl"); +julia> Compilers.compile_Julia(g_o21, "func_o21.jl"); # Export the self-energy's source code to a C file. -julia> Compilers.compile_C(g_o211, "func_g211.c"); +julia> Compilers.compile_C(g_o21, "func_o21.c"); # Export the self-energy's source code to a Python file for use with the JAX machine learning framework. -julia> Compilers.compile_Python(g_o211, :jax, "func_g211.py"); +julia> Compilers.compile_Python(g_o21, :jax, "func_o21.py"); ``` ### Computational Graph visualization