-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpedersen.go
230 lines (183 loc) · 4.94 KB
/
pedersen.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Package pedersen
// Copyright 2023 Oleg Fomenko. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pedersen
import (
"bytes"
"crypto/rand"
"errors"
"math/big"
"strconv"
eth "github.com/ethereum/go-ethereum/crypto"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
)
// Hash function that should return the value in Curve.N field
var Hash func(...[]byte) *big.Int = defaultHash
// defaultHash - default hash function Keccak256
func defaultHash(bytes ...[]byte) *big.Int {
data := make([][]byte, 0, len(bytes))
for _, b := range bytes {
data = append(data, uint256Bytes(b))
}
return new(big.Int).Mod(new(big.Int).SetBytes(eth.Keccak256(data...)), bn256.Order)
}
type Proof struct {
E0 *big.Int
C []*bn256.G1
S []*big.Int
N int
}
// PedersenCommitment creates *bn256.G1 with pedersen commitment aH + rG
func PedersenCommitment(a, r *big.Int) *bn256.G1 {
return Add(ScalarMul(H, a), ScalarMul(G, r))
}
// VerifyPedersenCommitment - verifies proof that C commitment commits the value in [0..2^n-1]
func VerifyPedersenCommitment(C *bn256.G1, proof Proof) error {
var R []*bn256.G1
for i := 0; i < proof.N; i++ {
//calculating ei = Hash(si*G - e0(Ci - 2^i*H))
siG := ScalarMul(G, proof.S[i])
p := ScalarMul(H, pow2(i))
p = Sub(proof.C[i], p)
p = ScalarMul(p, proof.E0)
p = Sub(siG, p)
ei := hashPoints(p)
R = append(R, ScalarMul(proof.C[i], ei))
}
// eo_ = Hash(Ro||R1||...Rn-1)
e0_ := hashPoints(R...)
// C = sum(Ci)
Com := proof.C[0]
for i := 1; i < proof.N; i++ {
Com = Add(Com, proof.C[i])
}
if e0_.Cmp(proof.E0) != 0 {
return errors.New("e0 != e0_")
}
if !bytes.Equal(C.Marshal(), Com.Marshal()) {
return errors.New("C != sum(Ci)")
}
return nil
}
// CreatePedersenCommitment - creates Pedersen commitment for given val, and
// generates proof that given val lies in [0..2^n-1].
// Returns Proof, generated commitment and private key in case of success generation.
func CreatePedersenCommitment(val uint64, n int) (Proof, *bn256.G1, *big.Int, error) {
// Converting into bit representation
bitsStr := strconv.FormatUint(val, 2)
var bits []bool
for i := len(bitsStr) - 1; i >= 0; i-- {
bits = append(bits, bitsStr[i] == '1')
}
if len(bits) > n {
return Proof{}, nil, nil, errors.New("invalid value: greater then 2^n - 1")
}
// Adding leading zeros
for len(bits) < n {
bits = append(bits, false)
}
prv := big.NewInt(0)
var r []*big.Int
var k []*big.Int
var R []*bn256.G1
var C []*bn256.G1
for i := 0; i < n; i++ {
if bits[i] {
ri, err := rand.Int(rand.Reader, bn256.Order)
if err != nil {
return Proof{}, nil, nil, err
}
prv = add(prv, ri)
r = append(r, ri)
// Ci = Com(2^i, ri)
Ci := PedersenCommitment(pow2(i), ri)
C = append(C, Ci)
ki, err := rand.Int(rand.Reader, bn256.Order)
if err != nil {
return Proof{}, nil, nil, err
}
k = append(k, ki)
// Hash(ki*G)
kiG := ScalarMul(G, ki)
ei := hashPoints(kiG)
// Ri = Hash(ki*G)*Ci
R = append(R, ScalarMul(Ci, ei))
continue
}
ki0, err := rand.Int(rand.Reader, bn256.Order)
if err != nil {
return Proof{}, nil, nil, err
}
k = append(k, ki0)
// Ri = ki0*G
R = append(R, ScalarMul(G, ki0))
// will be initialized later
C = append(C, nil)
// just placing nil value to be able to get corresponding r[i] for bit == 1 in future
r = append(r, nil)
}
// eo = Hash(Ro||R1||...Rn-1)
e0 := hashPoints(R...)
var s []*big.Int
for i := 0; i < n; i++ {
if bits[i] {
// si = ki + e0*r^i
si := add(k[i], mul(e0, r[i]))
s = append(s, si)
continue
}
ki, err := rand.Int(rand.Reader, bn256.Order)
if err != nil {
return Proof{}, nil, nil, err
}
// ei = Hash(ki*G + e0*2^i*H)
ei := hashPoints(PedersenCommitment(mul(e0, pow2(i)), ki))
// Ci = Ri /ei = (ki0/ei)*G
ei_inverse := new(big.Int).ModInverse(ei, bn256.Order)
C[i] = ScalarMul(R[i], ei_inverse)
prv = add(prv, mul(k[i], ei_inverse))
// si = ki + (ki0 * e0)/ei
si := add(ki, mul(mul(k[i], e0), ei_inverse))
s = append(s, si)
}
Com := C[0]
for i := 1; i < n; i++ {
Com = Add(Com, C[i])
}
return Proof{
E0: e0,
C: C,
S: s,
N: n,
},
Com,
prv,
nil
}
func add(x *big.Int, y *big.Int) *big.Int {
return new(big.Int).Mod(new(big.Int).Add(x, y), bn256.Order)
}
func mul(x *big.Int, y *big.Int) *big.Int {
return new(big.Int).Mod(new(big.Int).Mul(x, y), bn256.Order)
}
func pow2(i int) *big.Int {
return new(big.Int).Exp(big.NewInt(2), big.NewInt(int64(i)), bn256.Order)
}
func minus(val *big.Int) *big.Int {
return new(big.Int).Mod(new(big.Int).Mul(val, big.NewInt(-1)), bn256.Order)
}
func hashPoints(points ...*bn256.G1) *big.Int {
var data [][]byte
for _, p := range points {
data = append(data, X(p).Bytes())
data = append(data, Y(p).Bytes())
}
return Hash(data...)
}
func uint256Bytes(val []byte) []byte {
for len(val) < 32 {
val = append([]byte{0}, val...)
}
return val
}