-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
194 lines (150 loc) · 7.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import os
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
import torch
from transformers import AdamW, get_linear_schedule_with_warmup
from modules.FineTunedBERT import FineTunedBERT
from utils.batchManagers import MultiNLIBatchManager, IBMBatchManager, MRPCBatchManager, PDBBatchManager, SICKBatchManager
from copy import deepcopy
# path of the trained state dict
MODELS_PATH = './state_dicts/'
if not os.path.exists(MODELS_PATH):
os.makedirs(MODELS_PATH)
def path_to_dicts(config):
return MODELS_PATH + config.dataset + ".pt"
def get_accuracy(model, iter):
"""compute accuracy on a certain iterator
Parameters:
model (FineTunedBERT): the model to train
iter (MyIterator): iterator on a set
Returns:
float: said accuracy"""
model.eval()
count, num = 0., 0
with torch.no_grad():
for i, batch in enumerate(iter):
data, targets = batch
out = model(data)
predicted = out.argmax(dim=1)
count += (predicted == targets).sum().item()
num += len(targets)
model.train()
return count / num
def load_model(config, bm):
"""Load a model (either a new one or from disk)
Parameters:
config: argparse flags
Returns:
FineTunedBERT: the loaded model"""
trainable_layers = [9, 10, 11]
assert min(trainable_layers) >= 0 and max(trainable_layers) <= 11 # BERT has 12 layers!
model = FineTunedBERT(device = config.device, n_classes = len(bm.classes()), trainable_layers = trainable_layers)
# if we saved the state dictionary, load it.
if config.resume:
try :
model.load_state_dict(torch.load(path_to_dicts(config), map_location = config.device))
except Exception:
print(f"WARNING: the `--resume` flag was passed, but `{path_to_dicts(config)}` was NOT found!")
else:
if os.path.exists(path_to_dicts(config)):
print(f"WARNING: `--resume` flag was NOT passed, but `{path_to_dicts(config)}` was found!")
return model
def train(config, batchmanager, model):
"""Main training loop
Parameters:
config: argparse flags
batchmanager (MultiNLIBatchManager): indeed, the batchmanager
model (FineTunedBERT): the model to train
Returns:
(dict, float): the state dictionary of the best model and its dev accuracy"""
model.train()
# loss
criterion = torch.nn.CrossEntropyLoss()
# filter out from the optimizer the "frozen" parameters,
# which are the parameters without requires grad.
optimizer = AdamW(model.parameters(), lr=config.lr)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = 0, num_training_steps = len(batchmanager.train_iter) * config.epochs)
# compute initial dev accuracy (to check whether it is 1/n_classes)
last_dev_acc = get_accuracy(model, batchmanager.dev_iter)
best_dev_acc = last_dev_acc # to save the best model
best_model_dict = deepcopy(model.state_dict()) # to save the best model
print(f'inital dev accuracy: {last_dev_acc}', flush = True)
try :
for epoch in range(config.epochs):
loss_c = 0.
for i, batch in enumerate(batchmanager.train_iter):
optimizer.zero_grad()
data, targets = batch
out = model(data)
loss = criterion(out, targets)
loss.backward()
loss_c += loss.item()
if i != 0 and i % config.loss_print_rate == 0:
print(f'epoch #{epoch+1}/{config.epochs}, batch #{i}/{len(batchmanager.train_iter)}: loss = {loss.item()}', flush = True)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step() # update lr
# end of an epoch
print(f'#####\nEpoch {epoch+1} concluded!\n')
print(f'Average train loss: {loss_c / len(batchmanager.train_iter)}')
print(f'Average train acc : {get_accuracy(model, batchmanager.train_iter)}')
new_dev_acc = get_accuracy(model, batchmanager.dev_iter)
last_dev_acc = new_dev_acc
print(f'dev accuracy: {new_dev_acc}')
print('#####', flush = True)
# if it improves, this is the best model
if new_dev_acc > best_dev_acc:
best_dev_acc = new_dev_acc
best_model_dict = deepcopy(model.state_dict())
except KeyboardInterrupt:
print("Training stopped!")
new_dev_acc = get_accuracy(model, batchmanager.dev_iter)
print(f'Recomputing dev accuracy: {new_dev_acc}')
if new_dev_acc > best_dev_acc:
best_dev_acc = new_dev_acc
best_model_dict = deepcopy(model.state_dict())
test_acc = get_accuracy(model, batchmanager.test_iter)
print(f"TEST ACCURACY: {test_acc}")
return best_model_dict, best_dev_acc
if __name__ == "__main__":
# Parse training configuration
parser = argparse.ArgumentParser()
# Model params
parser.add_argument('--batch_size', type=int, default="32", help="Batch size")
parser.add_argument('--random_seed', type=int, default="42", help="Random seed")
parser.add_argument('--resume', action='store_true', help='resume training instead of restarting')
parser.add_argument('--lr', type=float, help='Learning rate', default = 2e-5)
parser.add_argument('--epochs', type=int, help='Number of epochs', default = 25)
parser.add_argument('--loss_print_rate', type=int, default='250', help='Print loss every')
parser.add_argument('--dataset', type=str, default='sick', help='Select the dataset to be used')
config = parser.parse_args()
torch.manual_seed(config.random_seed)
config.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
# choose the dataset!
if config.dataset.lower() in ('nli', 'multinli', 'mnli'):
# normalize
config.dataset = 'NLI'
batchmanager = MultiNLIBatchManager(batch_size = config.batch_size, device = config.device)
elif config.dataset.lower() in ("ibm", "stance"):
# normalize
config.dataset = 'IBM'
batchmanager = IBMBatchManager(batch_size = config.batch_size, device = config.device)
elif config.dataset.lower() in ('paraphrase', 'mrp', 'mrpc'):
config.dataset = 'MRPC'
batchmanager = MRPCBatchManager(batch_size = config.batch_size, device = config.device)
elif config.dataset.lower() in ('discourse', 'pdb'):
config.dataset = 'PDB'
batchmanager = PDBBatchManager(batch_size = config.batch_size, device= config.device)
elif config.dataset.lower() in ('sick'):
config.dataset = 'SICK'
batchmanager = SICKBatchManager(batch_size = config.batch_size, device = config.device)
else:
raise NotImplementedError
model = load_model(config, batchmanager)
# Train the model
print('Beginning the training...', flush = True)
state_dict, dev_acc = train(config, batchmanager, model)
print(f"#*#*#*#*#*#*#*#*#*#*#\nFINAL BEST DEV ACC: {dev_acc}\n#*#*#*#*#*#*#*#*#*#*#", flush = True)
#save model
torch.save(state_dict, path_to_dicts(config))