-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcropping.py
325 lines (261 loc) · 11.7 KB
/
cropping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from __future__ import division
from __future__ import print_function
import pickle
from glob import glob
import numpy as np
import pandas as pd
import dicom
from keras import backend as K
from skimage.feature import hog
from skimage.feature import local_binary_pattern
from segmentation import segment_lungs
from skimage import measure
from score import false_positive
from sklearn.cluster import k_means
from sklearn.svm import SVC
from keras.models import load_model
from scipy.ndimage.measurements import label
import cv2
import time
databowl = '/media/data/kaggle/'
kaggle_datafolder = '/media/data/kaggle/'
kaggle_metadata = './data/kaggle/'
K.set_image_dim_ordering('th')
def get_patch_coord(centroid, patch_size):
if centroid[0] < patch_size / 2:
r_min = 0
r_max = patch_size
elif centroid[0] > 512 - patch_size / 2:
r_min = 512 - patch_size
r_max = 512
else:
r_min = centroid[0] - patch_size / 2
r_max = centroid[0] + patch_size / 2
if centroid[1] < patch_size / 2:
c_min = 0
c_max = patch_size
elif centroid[1] > 512 - patch_size / 2:
c_min = 512 - patch_size
c_max = 512
else:
c_min = centroid[1] - patch_size / 2
c_max = centroid[1] + patch_size / 2
return int(r_min), int(r_max), int(c_min), int(c_max)
def read_imgs(patient):
img_files = glob(patient + '/*')
slices = [dicom.read_file(img_file) for img_file in img_files]
slices.sort(key=lambda x: float(x.ImagePositionPatient[2]))
imgs = np.stack([s.pixel_array for s in slices]).astype(np.float64)
new_imgs = np.zeros(imgs.shape, dtype=np.float32)
count = 0
for img in imgs[int(0.12*imgs.shape[0]):int(0.97*imgs.shape[0])]:
segmented = segment_lungs(img)
if len(segmented) == 0:
continue
new_imgs[count] = (segmented[0] - np.mean(segmented[0])) / np.std(segmented[0])
count += 1
return new_imgs[:count]
def get_filtered_nodules(imgs, unet):
nodules = []
masks = unet.predict(imgs[:, np.newaxis, :, :], batch_size=4).astype(int)
for i in range(masks.shape[0] - 1):
mask = masks[i, 0]
next_mask = masks[i + 1, 0]
blobs = map(lambda x: np.array(x.centroid), measure.regionprops(measure.label(mask)))
next_blobs = map(lambda x: np.array(x.centroid), measure.regionprops(measure.label(next_mask)))
for blob in blobs:
if not false_positive(next_blobs, blob, 15):
r_min, r_max, c_min, c_max = get_patch_coord(blob, 50)
nodules.append(imgs[i, r_min:r_max, c_min:c_max])
return np.array(nodules, dtype=np.float32)
def get_masks(imgs, unet):
masks = unet.predict(imgs[:, np.newaxis, :, :], batch_size=4).astype(int)
return masks
def get_all_nodules(imgs, unet):
nodules = []
masks = unet.predict(imgs[:, np.newaxis, :, :], batch_size=4).astype(int)
for idx, mask in enumerate(masks):
blobs = map(lambda x: np.array(x.centroid), measure.regionprops(measure.label(mask[0])))
for blob in blobs:
r_min, r_max, c_min, c_max = get_patch_coord(blob, 50)
nodules.append(imgs[idx, r_min:r_max, c_min:c_max])
return np.array(nodules, dtype=np.float32)
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + 1) / (K.sum(y_true_f) + K.sum(y_pred_f) + 1)
def dice_coef_np(y_true, y_pred):
y_true_f = y_true.flatten()
y_pred_f = y_pred.flatten()
intersection = np.sum(y_true_f * y_pred_f)
return (2. * intersection + 1) / (np.sum(y_true_f) + np.sum(y_pred_f) + 1)
def dice_coef_loss(y_true, y_pred):
return -1*dice_coef(y_true, y_pred)
def crop_nodule(img, bbox):
padding = 5
y_start = np.clip(bbox[0][1] - padding, 0, 512)
y_end = np.clip(bbox[1][1] + padding, 0, 512)
x_start = np.clip(bbox[0][0] - padding, 0, 512)
x_end = np.clip(bbox[1][0] + padding, 0, 512)
cropped = img[y_start:y_end, x_start:x_end]
cropped = cv2.resize(cropped, (50, 50))
return cropped
def draw_labeled_bboxes(img, labels):
copied = np.copy(img)
bboxes = []
# Iterate through all detected nodules
for nodule_number in range(1, labels[1]+1):
# Find pixels with each nodule_number label value
nonzero = (labels[0] == nodule_number).nonzero()
# Identify x and y values of those pixels
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Define a bounding box based on min/max x and y
width = np.max(nonzerox) - np.min(nonzerox)
height = np.max(nonzerox) - np.max(nonzeroy)
if width > 5 and height > 5:
bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy)))
bboxes.append(bbox)
# Draw the box on the image
#cv2.rectangle(img, bbox[0], bbox[1], (10, 10, 10), 2)
#copied = cv2.addWeighted(copied, 1.0, img, 1.0, 0.)
# Return the image
return copied, bboxes
def test_nodules():
unet = load_model(databowl + 'segmented_lungs_unet1.h5', custom_objects={'dice_coef_loss': dice_coef_loss})
df = pd.read_csv('./data/kaggle/stage1_labels.csv')
test_df = pd.read_csv('./data/kaggle/stage1_sample_submission.csv')
tr_nodules = []
for idx, patient in enumerate(test_df['id']):
print(idx, patient)
imgs = read_imgs('/media/data/kaggle/stage1/' + patient)
tr_nodules.append((get_filtered_nodules(imgs, unet)), patient)
np.save('./test_nodules.npy', np.array(tr_nodules))
def train_masks():
unet = load_model(databowl + 'segmented_lungs_unet1.h5', custom_objects={'dice_coef_loss': dice_coef_loss})
train_df = pd.read_csv('./data/kaggle/stage1_labels.csv')
num_samples = len(train_df)
batch_size = 50
batch = []
print("Number of training samples:", num_samples)
train_df.head()
for i in range(28):
nodules = []
batch_start = i * batch_size
batch_end = batch_start + batch_size
ts = time.time()
for idx, patient in train_df[batch_start:batch_end].iterrows():
if idx % 5 == 0:
print(i, idx, patient)
slices = read_imgs('/media/data/kaggle/stage1/' + patient['id'])
masks = get_masks(slices, unet)
nodules.append((masks, patient['id'], patient['cancer']))
del masks
del slices
np.save('/media/data/kaggle/masks/train_masks%d.npy' % i, np.array(nodules))
te = time.time()
print("Batch runtime:", te - ts)
def crop_nodules_heatmap():
unet = load_model(databowl + 'segmented_lungs_unet1.h5', custom_objects={'dice_coef_loss': dice_coef_loss})
train_df = pd.read_csv('./data/kaggle/stage1_labels.csv')
num_samples = len(train_df)
batch_size = 200
batch = []
print("Number of training samples:", num_samples)
for i in range(7):
nodules = []
batch_start = i * batch_size
batch_end = batch_start + batch_size
ts = time.time()
for idx, patient in train_df[batch_start:batch_end].iterrows():
if idx % 50 == 0:
print(i, idx, patient)
patient_nodules = []
# Get all slice masks from patient
slices = read_imgs('/media/data/kaggle/stage1/' + patient['id'])
# get predicted masks
predicted = get_masks(slices, unet)
# Create heatmap from all slices
threshold = 2.0
heatmap = np.sum(predicted, axis=0)[0]
# threshold to keep hottest regions
thresh_heatmap = np.copy(heatmap)
thresh_heatmap[thresh_heatmap < threshold] = 0
xy = thresh_heatmap.nonzero()
thresh_heatmap[xy[0], xy[1]] = 1.
# get bounding boxes on hottest nodule regions
labels = label(thresh_heatmap)
img_bbox, bboxes = draw_labeled_bboxes(np.copy(thresh_heatmap), labels)
padding = 5
# for each slice, keep only if dice coefficient > threshold
for idx, predicted_slice in enumerate(predicted):
for bbox in bboxes:
# isolate nodules
tmp = np.zeros((512, 512))
y_start = np.clip(bbox[0][1] - padding, 0, 512)
y_end = np.clip(bbox[1][1] + padding, 0, 512)
x_start = np.clip(bbox[0][0] - padding, 0, 512)
x_end = np.clip(bbox[1][0] + padding, 0, 512)
tmp[y_start:y_end, x_start:x_end] = 1
single_nodule_mask = np.logical_and(thresh_heatmap, tmp)
# Check if nodule covers area
dice_coefficient = dice_coef_np(single_nodule_mask, predicted_slice[0])
if dice_coefficient >= 0.40:
cropped_nodule = crop_nodule(slices[idx], bbox)
patient_nodules.append(cropped_nodule)
nodules.append((np.array(patient_nodules), patient['id'], patient['cancer']))
#print("Number of nodules detected for this patient",len(patient_nodules))
np.save('/media/data/kaggle/masks/cropped_heatmap_nodules_heat2_dice40%d.npy' % i, np.array(nodules))
te = time.time()
print("Batch runtime:", te - ts)
def crop_test_nodules():
unet = load_model(databowl + 'segmented_lungs_unet1.h5', custom_objects={'dice_coef_loss': dice_coef_loss})
test_df = pd.read_csv('./data/kaggle/stage1_sample_submission.csv')
num_samples = len(test_df)
print("Number of testing samples:", num_samples)
ts = time.time()
nodules = []
for idx, patient in test_df.iterrows():
if idx % 25 == 0:
print(idx, patient, len(nodules))
patient_nodules = []
# Get all slice masks from patient
slices = read_imgs('/media/data/kaggle/stage1/' + patient['id'])
# get predicted masks
predicted = get_masks(slices, unet)
# Create heatmap from all slices
threshold = 2.0
heatmap = np.sum(predicted, axis=0)[0]
# threshold to keep hottest regions
thresh_heatmap = np.copy(heatmap)
thresh_heatmap[thresh_heatmap < threshold] = 0
xy = thresh_heatmap.nonzero()
thresh_heatmap[xy[0], xy[1]] = 1.
# get bounding boxes on hottest nodule regions
labels = label(thresh_heatmap)
img_bbox, bboxes = draw_labeled_bboxes(np.copy(thresh_heatmap), labels)
padding = 5
# for each slice, keep only if dice coefficient > threshold
for idx, predicted_slice in enumerate(predicted):
for bbox in bboxes:
# isolate nodules
tmp = np.zeros((512, 512))
y_start = np.clip(bbox[0][1] - padding, 0, 512)
y_end = np.clip(bbox[1][1] + padding, 0, 512)
x_start = np.clip(bbox[0][0] - padding, 0, 512)
x_end = np.clip(bbox[1][0] + padding, 0, 512)
tmp[y_start:y_end, x_start:x_end] = 1
single_nodule_mask = np.logical_and(thresh_heatmap, tmp)
# Check if nodule covers area
dice_coefficient = dice_coef_np(single_nodule_mask, predicted_slice[0])
if dice_coefficient >= 0.40:
cropped_nodule = crop_nodule(slices[idx], bbox)
patient_nodules.append(cropped_nodule)
nodules.append((np.array(patient_nodules), patient['id']))
#print("Number of nodules detected for this patient",len(patient_nodules))
np.save(kaggle_datafolder + 'masks/test_cropped_heatmap_nodules_heat2_dice40.npy', np.array(nodules))
te = time.time()
print("Batch runtime:", te - ts)
if __name__ == "__main__":
crop_test_nodules()