-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathscore.py
41 lines (31 loc) · 1.55 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
from skimage import measure
def true_positive(act_blob, pred_blobs, max_dist):
"""checks whether 1 ground truth nodule was predicted correctly"""
for pred_blob in pred_blobs:
if np.sqrt(np.abs(np.dot(act_blob - pred_blob, act_blob - pred_blob))) < max_dist:
return 1
return 0
def false_positive(act_blobs, pred_blob, max_dist):
"""checks whether 1 predicted nodule is a false positive"""
for act_blob in act_blobs:
if np.sqrt(np.abs(np.dot(act_blob - pred_blob, act_blob - pred_blob))) < max_dist:
return 0
return 1
def score_slice(act, pred, max_dist):
"""function that takes ground truth mask and predicted mask for one slice and
outputs the numbers of true positives, false positives, and false negatives.
max_dist is the maximum distance in pixels allowed between the centroid of ground
truth nodule and that of predicted nodule in order to consider the predicted
nodule a true positive.
"""
act_blobs = map(lambda x: np.array(x.centroid), measure.regionprops(measure.label(act)))
pred_blobs = map(lambda x: np.array(x.centroid), measure.regionprops(measure.label(pred)))
true_positives = 0
false_positives = 0
for act_blob in act_blobs:
true_positives += true_positive(act_blob, pred_blobs, max_dist)
for pred_blob in pred_blobs:
false_positives += false_positive(act_blobs, pred_blob, max_dist)
false_negatives = len(act_blobs) - true_positives
return np.array([true_positives, false_positives, false_negatives])