forked from MengtingWan/KDEm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_syn_mix.py
104 lines (96 loc) · 4.13 KB
/
test_syn_mix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# -*- coding: utf-8 -*-
"""
test_syn_AUC.py
@author: Mengting Wan
"""
from __future__ import division
import numpy as np
import data_syn as syn
import evaluation
import mix_functions as mix
def run_syn_mix(m=200, n=100, load="", save="", lbda1=10, lbda2=10, p_unre1=0, p_unre2=0):
if(load!=""):
data_raw, truth, truth_conf = syn.reload_data(load)
else:
data_raw, truth, truth_conf = syn.data_mix(m, n, lbda1, lbda2, p_unre1, p_unre2)
measure_all = []
size = np.zeros(2)
for i in range(n):
size = size + np.array([data_raw[i].shape[0],data_raw[i].shape[0]**2])
kernel="gaussian"
#Test with KDEm
rtn = mix.test_KDEm(data_raw, m, n, kernel=kernel, norm=True, p_unre=p_unre1)
out1, index1, conf1, source_score, auc1, time1 = rtn
#Report test results
fpr = np.zeros((2,len(out1)))
tpr = np.zeros((2,len(out1)))
for i in range(len(out1)):
n_cluster_pre, evl_measure = evaluation.evaluation_basic(out1[i], conf1[i], truth, truth_conf)
#evl_measure = TP,FP,FN,TN, precision,recall,F1,FPR, MAE,RMSE
if(evl_measure.shape[0]<2):
evl_measure = np.append(evl_measure, np.zeros((1,10)),axis=0)
fpr[:,i] = evl_measure[:,7]
tpr[:,i] = evl_measure[:,5]
auc = np.zeros(3)
auc[0] = mix.compute_AUC(fpr[0,:],tpr[0,:])
auc[1] = mix.compute_AUC(fpr[1,:],tpr[1,:])
auc[2] = auc1
measure_all.append(auc)
#Test with KDE
rtn = mix.test_KDE(data_raw, m, n, kernel=kernel, norm=True, p_unre=p_unre1)
out2, cluster_index, conf2, auc2, time2 = rtn
#Report test results
fpr = np.zeros((2,len(out1)))
tpr = np.zeros((2,len(out1)))
for i in range(len(out1)):
n_cluster_pre, evl_measure = evaluation.evaluation_basic(out2[i], conf2[i], truth, truth_conf)
#evl_measure = TP,FP,FN,TN, precision,recall,F1,FPR, MAE,RMSE
if(evl_measure.shape[0]<2):
evl_measure = np.append(evl_measure, np.zeros((1,10)),axis=0)
fpr[:,i] = evl_measure[:,7]
tpr[:,i] = evl_measure[:,5]
auc = np.zeros(3)
auc[0] = mix.compute_AUC(fpr[0,:],tpr[0,:])
auc[1] = mix.compute_AUC(fpr[1,:],tpr[1,:])
auc[2] = auc2
measure_all.append(auc)
rtn = mix.test_RKDE(data_raw, m, n, kernel=kernel, norm=True, p_unre=p_unre1)
out3, cluster_index, conf3, auc3, time3 = rtn
fpr = np.zeros((2,len(out1)))
tpr = np.zeros((2,len(out1)))
for i in range(len(out1)):
n_cluster_pre, evl_measure = evaluation.evaluation_basic(out3[i], conf3[i], truth, truth_conf)
#evl_measure = TP,FP,FN,TN, precision,recall,F1,FPR, MAE,RMSE
if(evl_measure.shape[0]<2):
evl_measure = np.append(evl_measure, np.zeros((1,10)),axis=0)
fpr[:,i] = evl_measure[:,7]
tpr[:,i] = evl_measure[:,5]
auc = np.zeros(3)
auc[0] = mix.compute_AUC(fpr[0,:],tpr[0,:])
auc[1] = mix.compute_AUC(fpr[1,:],tpr[1,:])
auc[2] = auc3
measure_all.append(auc)
if(save!=""):
syn.save_syn(data_raw, truth, truth_conf, path=save)
time1.append(size[0])
time1.append(size[1])
return([measure_all,time1[:]])
def run_test_mix(m=200, n=100, k=50):
measure_all = []
lbda_set=[10,15,20,25,30]
p_unre_set=[0.1,0.2,0.3]
time_avg = []
for lbda in lbda_set:
for p_unre in p_unre_set:
print "\n===lbda:"+str(lbda)+" p:"+str(p_unre)+"==="
for ki in range(k):
print "the "+str(ki+1)+"th dataset for lbda="+str(lbda)+" p="+str(p_unre)
save = ""
load = ".//data_syn//data_syn_mix"+"_"+str(lbda)+"_"+str(p_unre)+"_"+str(ki+1)+".txt"
measure,time1 = run_syn_mix(m, n, load, save, lbda, lbda, p_unre, p_unre)
measure_all.append(measure)
time_avg.append(time1)
avg_m = np.mean(np.array(measure_all),axis=0)
np.savetxt(".//measure_syn//syn_auc_avg_mix"+"_"+str(lbda)+"_"+str(p_unre)+".txt",avg_m, fmt='%.4f')
np.savetxt(".//measure_syn//time_avg_mix.txt",np.array(time_avg),fmt="%.4f")
return([])