-
Notifications
You must be signed in to change notification settings - Fork 569
/
Copy pathbenchmark.py
219 lines (190 loc) · 7.7 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import os
import time
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDistributedDataParallel
from mmcv.runner import init_dist, load_checkpoint, wrap_fp16_model
from mmdet.datasets import build_dataloader, replace_ImageToTensor
from mmrotate.datasets import build_dataset
from mmrotate.models import build_detector
def parse_args():
parser = argparse.ArgumentParser(description='mmrotate benchmark a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--repeat-num',
type=int,
default=1,
help='number of repeat times of measurement for averaging the results')
parser.add_argument(
'--max-iter', type=int, default=2000, help='num of max iter')
parser.add_argument(
'--log-interval', type=int, default=50, help='interval of logging')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
help='Whether to fuse conv and bn, this will slightly increase'
'the inference speed')
parser.add_argument(
'--use-fp16',
action='store_true',
help='Whether to use fp16 to inference')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def measure_inference_speed(cfg, checkpoint, max_iter, log_interval,
is_fuse_conv_bn, use_fp16):
""" inference speed statistics
Args:
cfg (object): Test config object.
checkpoint (str): Checkpoint file path.
max_iter (int): Num of max iter.
log_interval (int): Interval of logging.
is_fuse_conv_bn (bool): Whether to fuse conv and bn,
this will slightly increase the inference speed
use_fp16 (bool): Whether to use fp16 to inference.
Returns:
fps (float): Average speed of inference (fps).
"""
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
cfg.data.test.test_mode = True
# build the dataloader
samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
if samples_per_gpu > 1:
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=1,
# Because multiple processes will occupy additional CPU resources,
# FPS statistics will be more unstable when workers_per_gpu is not 0.
# It is reasonable to set workers_per_gpu to 0.
workers_per_gpu=0,
dist=True,
shuffle=False)
# build the model and load checkpoint
cfg.model.train_cfg = None
model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
if use_fp16:
wrap_fp16_model(model)
load_checkpoint(model, checkpoint, map_location='cpu')
if is_fuse_conv_bn:
model = fuse_conv_bn(model)
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
model.eval()
if use_fp16:
model.half()
# the first several iterations may be very slow so skip them
num_warmup = 5
pure_inf_time = 0
fps = 0
# benchmark with 2000 image and take the average
for i, data in enumerate(data_loader):
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
model(return_loss=False, rescale=True, **data)
torch.cuda.synchronize()
elapsed = time.perf_counter() - start_time
if i >= num_warmup:
pure_inf_time += elapsed
if (i + 1) % log_interval == 0:
fps = (i + 1 - num_warmup) / pure_inf_time
print(
f'Done image [{i + 1:<3}/ {max_iter}], '
f'fps: {fps:.1f} img / s, '
f'times per image: {1000 / fps:.1f} ms / img',
flush=True)
if (i + 1) == max_iter:
fps = (i + 1 - num_warmup) / pure_inf_time
print(
f'Overall fps: {fps:.1f} img / s, '
f'times per image: {1000 / fps:.1f} ms / img',
flush=True)
break
return fps
def repeat_measure_inference_speed(cfg,
checkpoint,
max_iter,
log_interval,
is_fuse_conv_bn,
use_fp16,
repeat_num=1):
""" repeat to inference several times and take the average
Args:
cfg (object): Test config object.
checkpoint (str): Checkpoint file path.
max_iter (int): Num of max iter.
log_interval (int): Interval of logging.
is_fuse_conv_bn (bool): Whether to fuse conv and bn,
this will slightly increase the inference speed
use_fp16 (bool): Whether to use fp16 to inference.
repeat_num (int): Number of repeat times of measurement
for averaging the results.
Returns:
fps (float of list(float)): Inference speed(fps) or
list of inference speed(fps) for repeating measurements.
"""
assert repeat_num >= 1
fps_list = []
for _ in range(repeat_num):
#
cp_cfg = copy.deepcopy(cfg)
fps_list.append(
measure_inference_speed(cp_cfg, checkpoint, max_iter, log_interval,
is_fuse_conv_bn, use_fp16))
if repeat_num > 1:
fps_list_ = [round(fps, 1) for fps in fps_list]
times_pre_image_list_ = [round(1000 / fps, 1) for fps in fps_list]
mean_fps_ = sum(fps_list_) / len(fps_list_)
mean_times_pre_image_ = sum(times_pre_image_list_) / len(
times_pre_image_list_)
print(
f'Overall fps: {fps_list_}[{mean_fps_:.1f}] img / s, '
f'times per image: '
f'{times_pre_image_list_}[{mean_times_pre_image_:.1f}] ms / img',
flush=True)
return fps_list
return fps_list[0]
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
if args.launcher == 'none':
raise NotImplementedError('Only supports distributed mode')
else:
init_dist(args.launcher, **cfg.dist_params)
repeat_measure_inference_speed(cfg, args.checkpoint, args.max_iter,
args.log_interval, args.fuse_conv_bn,
args.use_fp16, args.repeat_num)
if __name__ == '__main__':
main()