-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvfft.f
executable file
·2607 lines (2600 loc) · 85.3 KB
/
vfft.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
! Part of Dflow3d a 3D Navier Stokes solver with variable density for
! simulations of near field dredge plume mixing
! Copyright (C) 2012 Lynyrd de Wit
! This program is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
function pimach(dummy)
real dummy
pimach = 4.*atan(1.)
end
SUBROUTINE VCOSQB(M,N,X,XT,MDIMX,WSAVE)
C***BEGIN PROLOGUE VCOSQB
C***DATE WRITTEN 860701 (YYMMDD)
C***REVISION DATE 900509 (YYMMDD)
C***CATEGORY NO. J1A3
C***KEYWORDS FAST FOURIER TRANSFORM, COSINE TRANSFORM, ODD WAVE
C NUMBERS, MULTIPLE SEQUENCES
C***AUTHOR BOISVERT, R. F. (NIST)
C***PURPOSE Normalized inverse of VCOSQF.
C***DESCRIPTION
C
C Subroutine VCOSQB computes the backward fast Fourier cosine transform
C of M quarter wave sequences. That is, cosine series representations
C with only odd wave numbers. The transform is defined below at output
C parameter X.
C
C The array WSAVE which is used by subroutine VCOSQB must be
C initialized by calling subroutine VCOSQI(N,WSAVE).
C
C
C Input Parameters
C
C M the number of sequences to be transformed.
C
C N the length of the sequences to be transformed. The method
C is most efficient when N is a product of small primes.
C
C X an array of size at least X(MDIMX,N) which contains the
C the sequences to be transformed. The sequences are stored
C in the ROWS of X. Thus, the Jth sequence is stored in
C X(J,I), I=1,..,N.
C
C XT a work array of size at least XT(MDIMX,N).
C
C MDIMX the first dimension of the array X exactly as it appears in
C the calling program.
C
C WSAVE a work array which must be dimensioned at least 2*N+15
C in the program that calls VCOSQB. The WSAVE array must be
C initialized by calling subroutine VCOSQI(N,WSAVE), and a
C different WSAVE array must be used for each different
C value of N. This initialization does not have to be
C repeated so long as N remains unchanged.
C
C Output Parameters
C
C X For I=1,...,N and J=1,...,M
C
C X(I)= the sum from K=1 to K=N of
C
C 4*X(K)*COS((2*K-1)*(I-1)*PI/(2*N)) /SQRT(4*N)
C
C WSAVE contains initialization calculations which must not
C be destroyed between calls of VCOSQF or VCOSQB.
C
C -----------------------------------------------------------------
C
C NOTE - A call of VCOSQF followed immediately by a call of
C of VCOSQB will return the original sequences X. Thus,
C VCOSQB is the correctly normalized inverse VCOSQF.
C
C -----------------------------------------------------------------
C
C VCOSQB is a straightforward extension of the subprogram COSQB to
C handle M simultaneous sequences. COSQB was originally developed
C by P. N. Swarztrauber of NCAR.
C
C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
C Computations, (G. Rodrigue, ed.), Academic Press, 1982,
C pp. 51-83.
C***ROUTINES CALLED (NONE)
C***END PROLOGUE VCOSQB
DIMENSION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)
C***FIRST EXECUTABLE STATEMENT VCOSQB
IF (M .LE. 0) GO TO 900
IF (N .GT. 2) GO TO 300
IF (N .EQ. 2) GO TO 200
GO TO 900
C
C CASE N = 2
C
200 CONTINUE
SCALE = 2.0E0*SQRT(0.50E0)
DO 210 J=1,M
X1 = SCALE*(X(J,1)+X(J,2))
X(J,2) = X(J,1)-X(J,2)
X(J,1) = X1
210 CONTINUE
GO TO 900
C
C CASE N .GT. 2
C
C ... PREPROCESSING
C
300 CONTINUE
NS2 = (N+1)/2
NP2 = N+2
DO 310 I=3,N,2
DO 310 J=1,M
XIM1 = X(J,I-1)+X(J,I)
X(J,I) = X(J,I)-X(J,I-1)
X(J,I-1) = XIM1
310 CONTINUE
DO 320 J=1,M
X(J,1) = X(J,1)+X(J,1)
320 CONTINUE
MODN = MOD(N,2)
IF (MODN .EQ. 0) THEN
DO 330 J=1,M
X(J,N) = X(J,N)+X(J,N)
330 CONTINUE
ENDIF
C
C ... REAL, PERIODIC TRANSFORM
C
CALL VRFFTB (M,N,X,XT,MDIMX,WSAVE(N+1))
C
C ... POSTPROCESSING
C
DO 340 K=2,NS2
KC = NP2-K
DO 340 J=1,M
XT(J,K) = WSAVE(K-1)*X(J,KC)+WSAVE(KC-1)*X(J,K)
XT(J,KC) = WSAVE(K-1)*X(J,K)-WSAVE(KC-1)*X(J,KC)
340 CONTINUE
IF (MODN .EQ. 0) THEN
DO 350 J=1,M
X(J,NS2+1) = WSAVE(NS2)*(X(J,NS2+1)+X(J,NS2+1))
350 CONTINUE
ENDIF
DO 360 K=2,NS2
KC = NP2-K
DO 360 J=1,M
X(J,K) = XT(J,K)+XT(J,KC)
X(J,KC) = XT(J,K)-XT(J,KC)
360 CONTINUE
DO 370 J=1,M
X(J,1) = X(J,1)+X(J,1)
370 CONTINUE
C
C ... NORMALIZATION
C
SCALE = 0.5
DO 380 I=1,N
DO 380 J=1,M
X(J,I) = SCALE*X(J,I)
380 CONTINUE
C
C EXIT
C
900 CONTINUE
RETURN
END
SUBROUTINE VCOSQF(M,N,X,XT,MDIMX,WSAVE)
C***BEGIN PROLOGUE VCOSQF
C***DATE WRITTEN 860701 (YYMMDD)
C***REVISION DATE 900509 (YYMMDD)
C***CATEGORY NO. J1A3
C***KEYWORDS FAST FOURIER TRANSFORM, COSINE TRANSFORM, ODD WAVE
C NUMBERS, MULTIPLE SEQUENCES
C***AUTHOR BOISVERT, R. F. (NIST)
C***PURPOSE Forward cosine transform, odd wave numbers, M sequences.
C***DESCRIPTION
C
C Subroutine VCOSQF computes the forward fast Fourier cosine transform
C of M quarter wave sequences. That is, cosine series representations
C with only odd wave numbers. The transform is defined below at output
C parameter X.
C
C The array WSAVE which is used by subroutine VCOSQF must be
C initialized by calling subroutine VCOSQI(N,WSAVE).
C
C
C Input Parameters
C
C M the number of sequences to be transformed.
C
C N the length of the sequences to be transformed. The method
C is most efficient when N is a product of small primes.
C
C X an array of size at least X(MDIMX,N) which contains the
C the sequences to be transformed. The sequences are stored
C in the ROWS of X. Thus, the Jth sequence is stored in
C X(J,I), I=1,..,N.
C
C XT a work array of size at least XT(MDIMX,N).
C
C MDIMX the first dimension of the array X exactly as it appears in
C the calling program.
C
C WSAVE a work array which must be dimensioned at least 2*N+15
C in the program that calls VCOSQF. The WSAVE array must be
C initialized by calling subroutine VCOSQI(N,WSAVE), and a
C different WSAVE array must be used for each different
C value of N. This initialization does not have to be
C repeated so long as N remains unchanged.
C
C Output Parameters
C
C X For I=1,...,N and J=1,...,M
C
C X(I) = ( X(1) + the sum from K=2 to K=N of
C
C 2*X(K)*COS((2*I-1)*(K-1)*PI/(2*N)) )/SQRT(4*N)
C
C WSAVE contains initialization calculations which must not
C be destroyed between calls of VCOSQF or VCOSQB.
C
C -----------------------------------------------------------------
C
C NOTE - A call of VCOSQF followed immediately by a call of
C of VCOSQB will return the original sequences X. Thus,
C VCOSQB is the correctly normalized inverse VCOSQF.
C
C -----------------------------------------------------------------
C
C VCOSQF is a straightforward extension of the subprogram COSQF to
C handle M simultaneous sequences. COSQF was originally developed
C by P. N. Swarztrauber of NCAR.
C
C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
C Computations, (G. Rodrigue, ed.), Academic Press, 1982,
C pp. 51-83.
C***ROUTINES CALLED (NONE)
C***END PROLOGUE VCOSQF
DIMENSION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)
C***FIRST EXECUTABLE STATEMENT VCOSQF
IF (M .LE. 0) GO TO 900
IF (N .GT. 2) GO TO 300
IF (N .LT. 2) GO TO 900
C
C CASE N = 2
C
SQRT2 = SQRT(2.0)
SCALE = 0.50E0/SQRT2
DO 210 J=1,M
TSQX = SQRT2*X(J,2)
X(J,2) = SCALE*(X(J,1)-TSQX)
X(J,1) = SCALE*(X(J,1)+TSQX)
210 CONTINUE
GO TO 900
C
C CASE N .GT. 2
C
300 CONTINUE
C
C ... PREPROCESSING
C
NS2 = (N+1)/2
NP2 = N+2
DO 310 K=2,NS2
KC = NP2-K
DO 310 J=1,M
XT(J,K) = X(J,K)+X(J,KC)
XT(J,KC) = X(J,K)-X(J,KC)
310 CONTINUE
MODN = MOD(N,2)
IF (MODN .EQ. 0) THEN
DO 320 J=1,M
XT(J,NS2+1) = X(J,NS2+1)+X(J,NS2+1)
320 CONTINUE
ENDIF
DO 330 K=2,NS2
KC = NP2-K
DO 330 J=1,M
X(J,K) = WSAVE(K-1)*XT(J,KC)+WSAVE(KC-1)*XT(J,K)
X(J,KC) = WSAVE(K-1)*XT(J,K)-WSAVE(KC-1)*XT(J,KC)
330 CONTINUE
IF (MODN .EQ. 0) THEN
DO 340 J=1,M
X(J,NS2+1) = WSAVE(NS2)*XT(J,NS2+1)
340 CONTINUE
ENDIF
C
C ... REAL, PERIODIC TRANSFORM
C
CALL VRFFTF (M,N,X,XT,MDIMX,WSAVE(N+1))
C
C ... POSTPROCESSING
C
DO 350 I=3,N,2
DO 350 J=1,M
XIM1 = X(J,I-1)-X(J,I)
X(J,I) = X(J,I-1)+X(J,I)
X(J,I-1) = XIM1
350 CONTINUE
C
C ... NORMALIZATION
C
SCALE = 0.5
DO 360 I=1,N
DO 360 J=1,M
X(J,I) = SCALE*X(J,I)
360 CONTINUE
C
C EXIT
C
900 CONTINUE
RETURN
END
SUBROUTINE VCOSQI(N,WSAVE)
C***BEGIN PROLOGUE VCOSQI
C***DATE WRITTEN 860701 (YYMMDD)
C***REVISION DATE 900509 (YYMMDD)
C***CATEGORY NO. J1A3
C***KEYWORDS FAST FOURIER TRANSFORM, COSINE TRANSFORM, ODD WAVE
C NUMBERS, MULTIPLE SEQUENCES
C***AUTHOR BOISVERT, R. F. (NIST)
C***PURPOSE Initialize for VCOSQF and VCOSQB.
C***DESCRIPTION
C
C Subroutine VCOSQI initializes the array WSAVE which is used in
C both VCOSQF and VCOSQB. The prime factorization of N together with
C a tabulation of the trigonometric functions are computed and
C stored in WSAVE.
C
C Input Parameter
C
C N the length of the array to be transformed. The method
C is most efficient when N is a product of small primes.
C
C Output Parameter
C
C WSAVE a work array which must be dimensioned at least 2*N+15.
C The same work array can be used for both VCOSQF and VCOSQB
C as long as N remains unchanged. Different WSAVE arrays
C are required for different values of N. The contents of
C WSAVE must not be changed between calls of VCOSQF or VCOSQB.
C
C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
C Computations, (G. Rodrigue, ed.), Academic Press, 1982,
C pp. 51-83.
C***ROUTINES CALLED VRFFTI
C***END PROLOGUE VCOSQI
DIMENSION WSAVE(*)
C***FIRST EXECUTABLE STATEMENT VCOSQI
PIH = 0.5*PIMACH(1.0)
DT = PIH/REAL(N)
FK = 0.
DO 101 K=1,N
FK = FK+1.
WSAVE(K) = COS(FK*DT)
101 CONTINUE
CALL VRFFTI (N,WSAVE(N+1))
RETURN
END
SUBROUTINE VCOST(M,N,X,XT,MDIMX,WSAVE)
C***BEGIN PROLOGUE VCOST
C***DATE WRITTEN 860701 (YYMMDD)
C***REVISION DATE 900509 (YYMMDD)
C***CATEGORY NO. J1A3
C***KEYWORDS FAST FOURIER TRANSFORM, COSINE TRANSFORM, MULTIPLE
C SEQUENCES
C***AUTHOR BOISVERT, R. F. (NIST)
C***PURPOSE Cosine transform of one or more real, even sequences.
C***DESCRIPTION
C
C Subroutine VCOST computes the discrete Fourier cosine transform
C of M even sequences X(J,I), J=1,...,M. The transform is defined
C below at output parameter X.
C
C The array WSAVE which is used by subroutine VCOST must be
C initialized by calling subroutine VCOSTI(N,WSAVE).
C
C Input Parameters
C
C M the number of sequences to be transformed.
C
C N the length of the sequence to be transformed. N must be
C greater than 1. The method is most efficient when N-1 is
C is a product of small primes.
C
C X an array of size at least X(MDIMX,N) which contains the
C the sequences to be transformed. The sequences are stored
C in the ROWS of X. Thus, the Jth sequence is stored in
C X(J,I), I=1,..,N.
C
C XT a work array of size at least XT(MDIMX,N-1).
C
C MDIMX the first dimension of the array X exactly as it appears in
C the calling program.
C
C WSAVE a work array which must be dimensioned at least 3*N+15
C in the program that calls VCOST. The WSAVE array must be
C initialized by calling subroutine VCOSTI(N,WSAVE), and a
C different WSAVE array must be used for each different
C value of N. This initialization does not have to be
C repeated so long as N remains unchanged. Thus subsequent
C transforms can be obtained faster than the first.
C
C Output Parameters
C
C X For I=1,...,N and J=1,...,M
C
C X(J,I) = ( X(J,1)+(-1)**(I-1)*X(J,N)
C
C + the sum from K=2 to K=N-1
C
C 2*X(J,K)*COS((K-1)*(I-1)*PI/(N-1)) )/SQRT(2*(N-1))
C
C WSAVE contains initialization calculations which must not be
C destroyed between calls of VCOST.
C
C -----------------------------------------------------------------
C
C NOTE - A call of VCOST followed immediately by another call
C of VCOST will return the original sequences X. Thus,
C VCOST is the correctly normalized inverse of itself.
C
C -----------------------------------------------------------------
C
C VCOST is a straightforward extension of the subprogram COST to
C handle M simultaneous sequences. The scaling of the sequences
C computed by VCOST is different than that of COST. COST was
C originally developed by P. N. Swarztrauber of NCAR.
C
C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
C Computations, (G. Rodrigue, ed.), Academic Press, 1982,
C pp. 51-83.
C***ROUTINES CALLED VRFFTF
C***END PROLOGUE VCOST
DIMENSION X(MDIMX,*), XT(MDIMX,*), WSAVE(*)
C***FIRST EXECUTABLE STATEMENT VCOST
IF (M .LE. 0) GO TO 900
IF (N .LE. 1) GO TO 900
IF (N .GT. 3) GO TO 400
IF (N .EQ. 3) GO TO 300
C
C CASE N = 2
C
SCALE = SQRT(0.50E0)
DO 210 J=1,M
X1H = SCALE*(X(J,1)+X(J,2))
X(J,2) = SCALE*(X(J,1)-X(J,2))
X(J,1) = X1H
210 CONTINUE
GO TO 900
C
C CASE N = 3
C
300 CONTINUE
SCALE = 0.50E0
DO 310 J=1,M
X1P3 = X(J,1)+X(J,3)
TX2 = X(J,2)+X(J,2)
X(J,2) = SCALE*(X(J,1)-X(J,3))
X(J,1) = SCALE*(X1P3+TX2)
X(J,3) = SCALE*(X1P3-TX2)
310 CONTINUE
GO TO 900
C
C CASE N .GT. 3
C
C ... PREPROCESSING
C
400 CONTINUE
NM1 = N-1
NP1 = N+1
NS2 = N/2
DO 410 J=1,M
XT(J,1) = X(J,1)-X(J,N)
X(J,1) = X(J,1)+X(J,N)
410 CONTINUE
DO 420 K=2,NS2
KC = NP1-K
DO 420 J=1,M
T1 = X(J,K)+X(J,KC)
T2 = X(J,K)-X(J,KC)
XT(J,1) = XT(J,1)+WSAVE(KC)*T2
T2 = WSAVE(K)*T2
X(J,K) = T1-T2
X(J,KC) = T1+T2
420 CONTINUE
MODN = MOD(N,2)
IF (MODN .NE. 0) THEN
DO 430 J=1,M
X(J,NS2+1) = X(J,NS2+1)+X(J,NS2+1)
430 CONTINUE
ENDIF
DO 435 J=1,M
X(J,N) = XT(J,1)
435 CONTINUE
C
C ... REAL PERIODIC TRANSFORM
C
CALL VRFFTF (M,NM1,X,XT,MDIMX,WSAVE(NP1))
C
C ... POSTPROCESSING
C
FACTOR = 1.0/SQRT(REAL(NM1))
DO 440 J=1,M
XT(J,1) = X(J,2)
X(J,2) = FACTOR*X(J,N)
440 CONTINUE
DO 450 I=4,N,2
DO 450 J=1,M
XI = X(J,I)
X(J,I) = X(J,I-2)-X(J,I-1)
X(J,I-1) = XT(J,1)
XT(J,1) = XI
450 CONTINUE
IF (MODN .NE. 0) THEN
DO 460 J=1,M
X(J,N) = XT(J,1)
460 CONTINUE
ENDIF
C
C ... NORMALIZATION
C
SCALE = SQRT(0.5)
DO 490 I=1,N
DO 490 J=1,M
X(J,I) = SCALE*X(J,I)
490 CONTINUE
C
C EXIT
C
900 CONTINUE
RETURN
END
SUBROUTINE VCOSTI(N,WSAVE)
C***BEGIN PROLOGUE VCOSTI
C***DATE WRITTEN 860701 (YYMMDD)
C***REVISION DATE 900509 (YYMMDD)
C***CATEGORY NO. J1A3
C***KEYWORDS FAST FOURIER TRANSFORM, COSINE TRANSFORM, MULTIPLE
C SEQUENCES
C***AUTHOR BOISVERT, R. F. (NIST)
C***PURPOSE Initialize for VCOST.
C***DESCRIPTION
C
C Subroutine VCOSTI initializes the array WSAVE which is used in
C subroutine VCOST. The prime factorization of N together with
C a tabulation of the trigonometric functions are computed and
C stored in WSAVE.
C
C Input Parameter
C
C N the length of the sequence to be transformed. The method
C is most efficient when N-1 is a product of small primes.
C
C Output Parameter
C
C WSAVE a work array which must be dimensioned at least 3*N+15.
C Different WSAVE arrays are required for different values
C of N. The contents of WSAVE must not be changed between
C calls of VCOST.
C
C -----------------------------------------------------------------
C
C VCOSTI is a straightforward extension of the subprogram COSTI to
C handle M simultaneous sequences. COSTI was originally developed
C by P. N. Swarztrauber of NCAR.
C
C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
C Computations, (G. Rodrigue, ed.), Academic Press, 1982,
C pp. 51-83.
C***ROUTINES CALLED VRFFTI
C***END PROLOGUE VCOSTI
DIMENSION WSAVE(*)
C***FIRST EXECUTABLE STATEMENT VCOSTI
PI = PIMACH(1.0)
IF (N .LE. 3) RETURN
NM1 = N-1
NP1 = N+1
NS2 = N/2
DT = PI/REAL(NM1)
FK = 0.
DO 101 K=2,NS2
FK = FK+1.
WSAVE(K) = 2.*SIN(FK*DT)
101 CONTINUE
FK = 0.
DO 102 K=2,NS2
KC = NP1-K
FK = FK+1.
WSAVE(KC) = 2.*COS(FK*DT)
102 CONTINUE
CALL VRFFTI (NM1,WSAVE(N+1))
RETURN
END
SUBROUTINE VRADB2 (MP,IDO,L1,CC,CH,MDIMC,WA1)
C
C VRFFTPK, VERSION 1, AUGUST 1985
C
DIMENSION CC(MDIMC,IDO,2,L1) ,CH(MDIMC,IDO,L1,2),
1 WA1(IDO)
DO 101 K=1,L1
DO 1001 M=1,MP
CH(M,1,K,1) = CC(M,1,1,K)+CC(M,IDO,2,K)
CH(M,1,K,2) = CC(M,1,1,K)-CC(M,IDO,2,K)
1001 CONTINUE
101 CONTINUE
IF (IDO-2) 107,105,102
102 IDP2 = IDO+2
DO 104 K=1,L1
DO 103 I=3,IDO,2
IC = IDP2-I
DO 1002 M=1,MP
CH(M,I-1,K,1) = CC(M,I-1,1,K)+CC(M,IC-1,2,K)
CH(M,I,K,1) = CC(M,I,1,K)-CC(M,IC,2,K)
CH(M,I-1,K,2) = WA1(I-2)*(CC(M,I-1,1,K)-CC(M,IC-1,2,K))
1 -WA1(I-1)*(CC(M,I,1,K)+CC(M,IC,2,K))
CH(M,I,K,2) = WA1(I-2)*(CC(M,I,1,K)+CC(M,IC,2,K))+WA1(I-1)
1 *(CC(M,I-1,1,K)-CC(M,IC-1,2,K))
1002 CONTINUE
103 CONTINUE
104 CONTINUE
IF (MOD(IDO,2) .EQ. 1) RETURN
105 DO 106 K=1,L1
DO 1003 M=1,MP
CH(M,IDO,K,1) = CC(M,IDO,1,K)+CC(M,IDO,1,K)
CH(M,IDO,K,2) = -(CC(M,1,2,K)+CC(M,1,2,K))
1003 CONTINUE
106 CONTINUE
107 RETURN
END
SUBROUTINE VRADB3 (MP,IDO,L1,CC,CH,MDIMC,WA1,WA2)
C
C VRFFTPK, VERSION 1, AUGUST 1985
C
DIMENSION CC(MDIMC,IDO,3,L1) ,CH(MDIMC,IDO,L1,3),
1 WA1(IDO) ,WA2(IDO)
ARG=2.*PIMACH(1.0)/3.
TAUR=COS(ARG)
TAUI=SIN(ARG)
DO 101 K=1,L1
DO 1001 M=1,MP
CH(M,1,K,1) = CC(M,1,1,K)+2.*CC(M,IDO,2,K)
CH(M,1,K,2) = CC(M,1,1,K)+(2.*TAUR)*CC(M,IDO,2,K)
1 -(2.*TAUI)*CC(M,1,3,K)
CH(M,1,K,3) = CC(M,1,1,K)+(2.*TAUR)*CC(M,IDO,2,K)
1 +2.*TAUI*CC(M,1,3,K)
1001 CONTINUE
101 CONTINUE
IF (IDO .EQ. 1) RETURN
IDP2 = IDO+2
DO 103 K=1,L1
DO 102 I=3,IDO,2
IC = IDP2-I
DO 1002 M=1,MP
CH(M,I-1,K,1) = CC(M,I-1,1,K)+(CC(M,I-1,3,K)+CC(M,IC-1,2,K))
CH(M,I,K,1) = CC(M,I,1,K)+(CC(M,I,3,K)-CC(M,IC,2,K))
CH(M,I-1,K,2) = WA1(I-2)*
1 ((CC(M,I-1,1,K)+TAUR*(CC(M,I-1,3,K)+CC(M,IC-1,2,K)))-
* (TAUI*(CC(M,I,3,K)+CC(M,IC,2,K))))
2 -WA1(I-1)*
3 ((CC(M,I,1,K)+TAUR*(CC(M,I,3,K)-CC(M,IC,2,K)))+
* (TAUI*(CC(M,I-1,3,K)-CC(M,IC-1,2,K))))
CH(M,I,K,2) = WA1(I-2)*
4 ((CC(M,I,1,K)+TAUR*(CC(M,I,3,K)-CC(M,IC,2,K)))+
8 (TAUI*(CC(M,I-1,3,K)-CC(M,IC-1,2,K))))
5 +WA1(I-1)*
6 ((CC(M,I-1,1,K)+TAUR*(CC(M,I-1,3,K)+CC(M,IC-1,2,K)))-
8 (TAUI*(CC(M,I,3,K)+CC(M,IC,2,K))))
CH(M,I-1,K,3) = WA2(I-2)*
7 ((CC(M,I-1,1,K)+TAUR*(CC(M,I-1,3,K)+CC(M,IC-1,2,K)))+
8 (TAUI*(CC(M,I,3,K)+CC(M,IC,2,K))))
8 -WA2(I-1)*
9 ((CC(M,I,1,K)+TAUR*(CC(M,I,3,K)-CC(M,IC,2,K)))-
8 (TAUI*(CC(M,I-1,3,K)-CC(M,IC-1,2,K))))
CH(M,I,K,3) = WA2(I-2)*
1 ((CC(M,I,1,K)+TAUR*(CC(M,I,3,K)-CC(M,IC,2,K)))-
8 (TAUI*(CC(M,I-1,3,K)-CC(M,IC-1,2,K))))
2 +WA2(I-1)*
3 ((CC(M,I-1,1,K)+TAUR*(CC(M,I-1,3,K)+CC(M,IC-1,2,K)))+
8 (TAUI*(CC(M,I,3,K)+CC(M,IC,2,K))))
1002 CONTINUE
102 CONTINUE
103 CONTINUE
RETURN
END
SUBROUTINE VRADB4 (MP,IDO,L1,CC,CH,MDIMC,WA1,WA2,WA3)
C
C VRFFTPK, VERSION 1, AUGUST 1985
C
DIMENSION CC(MDIMC,IDO,4,L1) ,CH(MDIMC,IDO,L1,4) ,
1 WA1(IDO) ,WA2(IDO) ,WA3(IDO)
SQRT2=SQRT(2.)
DO 101 K=1,L1
DO 1001 M=1,MP
CH(M,1,K,3) = (CC(M,1,1,K)+CC(M,IDO,4,K))
1 -(CC(M,IDO,2,K)+CC(M,IDO,2,K))
CH(M,1,K,1) = (CC(M,1,1,K)+CC(M,IDO,4,K))
1 +(CC(M,IDO,2,K)+CC(M,IDO,2,K))
CH(M,1,K,4) = (CC(M,1,1,K)-CC(M,IDO,4,K))
1 +(CC(M,1,3,K)+CC(M,1,3,K))
CH(M,1,K,2) = (CC(M,1,1,K)-CC(M,IDO,4,K))
1 -(CC(M,1,3,K)+CC(M,1,3,K))
1001 CONTINUE
101 CONTINUE
IF (IDO-2) 107,105,102
102 IDP2 = IDO+2
DO 104 K=1,L1
DO 103 I=3,IDO,2
IC = IDP2-I
DO 1002 M=1,MP
CH(M,I-1,K,1) = (CC(M,I-1,1,K)+CC(M,IC-1,4,K))
1 +(CC(M,I-1,3,K)+CC(M,IC-1,2,K))
CH(M,I,K,1) = (CC(M,I,1,K)-CC(M,IC,4,K))
1 +(CC(M,I,3,K)-CC(M,IC,2,K))
CH(M,I-1,K,2)=WA1(I-2)*((CC(M,I-1,1,K)-CC(M,IC-1,4,K))
1 -(CC(M,I,3,K)+CC(M,IC,2,K)))-WA1(I-1)
1 *((CC(M,I,1,K)+CC(M,IC,4,K))+(CC(M,I-1,3,K)-CC(M,IC-1,2,K)))
CH(M,I,K,2)=WA1(I-2)*((CC(M,I,1,K)+CC(M,IC,4,K))
1 +(CC(M,I-1,3,K)-CC(M,IC-1,2,K)))+WA1(I-1)
1 *((CC(M,I-1,1,K)-CC(M,IC-1,4,K))-(CC(M,I,3,K)+CC(M,IC,2,K)))
CH(M,I-1,K,3)=WA2(I-2)*((CC(M,I-1,1,K)+CC(M,IC-1,4,K))
1 -(CC(M,I-1,3,K)+CC(M,IC-1,2,K)))-WA2(I-1)
1 *((CC(M,I,1,K)-CC(M,IC,4,K))-(CC(M,I,3,K)-CC(M,IC,2,K)))
CH(M,I,K,3)=WA2(I-2)*((CC(M,I,1,K)-CC(M,IC,4,K))
1 -(CC(M,I,3,K)-CC(M,IC,2,K)))+WA2(I-1)
1 *((CC(M,I-1,1,K)+CC(M,IC-1,4,K))-(CC(M,I-1,3,K)
1 +CC(M,IC-1,2,K)))
CH(M,I-1,K,4)=WA3(I-2)*((CC(M,I-1,1,K)-CC(M,IC-1,4,K))
1 +(CC(M,I,3,K)+CC(M,IC,2,K)))-WA3(I-1)
1 *((CC(M,I,1,K)+CC(M,IC,4,K))-(CC(M,I-1,3,K)-CC(M,IC-1,2,K)))
CH(M,I,K,4)=WA3(I-2)*((CC(M,I,1,K)+CC(M,IC,4,K))
1 -(CC(M,I-1,3,K)-CC(M,IC-1,2,K)))+WA3(I-1)
1 *((CC(M,I-1,1,K)-CC(M,IC-1,4,K))+(CC(M,I,3,K)+CC(M,IC,2,K)))
1002 CONTINUE
103 CONTINUE
104 CONTINUE
IF (MOD(IDO,2) .EQ. 1) RETURN
105 CONTINUE
DO 106 K=1,L1
DO 1003 M=1,MP
CH(M,IDO,K,1) = (CC(M,IDO,1,K)+CC(M,IDO,3,K))
1 +(CC(M,IDO,1,K)+CC(M,IDO,3,K))
CH(M,IDO,K,2) = SQRT2*((CC(M,IDO,1,K)-CC(M,IDO,3,K))
1 -(CC(M,1,2,K)+CC(M,1,4,K)))
CH(M,IDO,K,3) = (CC(M,1,4,K)-CC(M,1,2,K))
1 +(CC(M,1,4,K)-CC(M,1,2,K))
CH(M,IDO,K,4) = -SQRT2*((CC(M,IDO,1,K)-CC(M,IDO,3,K))
1 +(CC(M,1,2,K)+CC(M,1,4,K)))
1003 CONTINUE
106 CONTINUE
107 RETURN
END
SUBROUTINE VRADB5 (MP,IDO,L1,CC,CH,MDIMC,WA1,WA2,WA3,WA4)
C
C VRFFTPK, VERSION 1, AUGUST 1985
C
DIMENSION CC(MDIMC,IDO,5,L1) ,CH(MDIMC,IDO,L1,5),
1 WA1(IDO) ,WA2(IDO) ,WA3(IDO) ,WA4(IDO)
ARG=2.*PIMACH(1.0)/5.
TR11=COS(ARG)
TI11=SIN(ARG)
TR12=COS(2.*ARG)
TI12=SIN(2.*ARG)
DO 101 K=1,L1
DO 1001 M=1,MP
CH(M,1,K,1) = CC(M,1,1,K)+2.*CC(M,IDO,2,K)+2.*CC(M,IDO,4,K)
CH(M,1,K,2) = (CC(M,1,1,K)+TR11*2.*CC(M,IDO,2,K)
1 +TR12*2.*CC(M,IDO,4,K))-(TI11*2.*CC(M,1,3,K)
1 +TI12*2.*CC(M,1,5,K))
CH(M,1,K,3) = (CC(M,1,1,K)+TR12*2.*CC(M,IDO,2,K)
1 +TR11*2.*CC(M,IDO,4,K))-(TI12*2.*CC(M,1,3,K)
1 -TI11*2.*CC(M,1,5,K))
CH(M,1,K,4) = (CC(M,1,1,K)+TR12*2.*CC(M,IDO,2,K)
1 +TR11*2.*CC(M,IDO,4,K))+(TI12*2.*CC(M,1,3,K)
1 -TI11*2.*CC(M,1,5,K))
CH(M,1,K,5) = (CC(M,1,1,K)+TR11*2.*CC(M,IDO,2,K)
1 +TR12*2.*CC(M,IDO,4,K))+(TI11*2.*CC(M,1,3,K)
1 +TI12*2.*CC(M,1,5,K))
1001 CONTINUE
101 CONTINUE
IF (IDO .EQ. 1) RETURN
IDP2 = IDO+2
DO 103 K=1,L1
DO 102 I=3,IDO,2
IC = IDP2-I
DO 1002 M=1,MP
CH(M,I-1,K,1) = CC(M,I-1,1,K)+(CC(M,I-1,3,K)+CC(M,IC-1,2,K))
1 +(CC(M,I-1,5,K)+CC(M,IC-1,4,K))
CH(M,I,K,1) = CC(M,I,1,K)+(CC(M,I,3,K)-CC(M,IC,2,K))
1 +(CC(M,I,5,K)-CC(M,IC,4,K))
CH(M,I-1,K,2) = WA1(I-2)*((CC(M,I-1,1,K)+TR11*
1 (CC(M,I-1,3,K)+CC(M,IC-1,2,K))+TR12
1 *(CC(M,I-1,5,K)+CC(M,IC-1,4,K)))-(TI11*(CC(M,I,3,K)
1 +CC(M,IC,2,K))+TI12*(CC(M,I,5,K)+CC(M,IC,4,K))))
1 -WA1(I-1)*((CC(M,I,1,K)+TR11*(CC(M,I,3,K)-CC(M,IC,2,K))
1 +TR12*(CC(M,I,5,K)-CC(M,IC,4,K)))+(TI11*(CC(M,I-1,3,K)
1 -CC(M,IC-1,2,K))+TI12*(CC(M,I-1,5,K)-CC(M,IC-1,4,K))))
CH(M,I,K,2) = WA1(I-2)*((CC(M,I,1,K)+TR11*(CC(M,I,3,K)
1 -CC(M,IC,2,K))+TR12*(CC(M,I,5,K)-CC(M,IC,4,K)))
1 +(TI11*(CC(M,I-1,3,K)-CC(M,IC-1,2,K))+TI12
1 *(CC(M,I-1,5,K)-CC(M,IC-1,4,K))))+WA1(I-1)
1 *((CC(M,I-1,1,K)+TR11*(CC(M,I-1,3,K)
1 +CC(M,IC-1,2,K))+TR12*(CC(M,I-1,5,K)+CC(M,IC-1,4,K)))
1 -(TI11*(CC(M,I,3,K)+CC(M,IC,2,K))+TI12
1 *(CC(M,I,5,K)+CC(M,IC,4,K))))
CH(M,I-1,K,3) = WA2(I-2)
1 *((CC(M,I-1,1,K)+TR12*(CC(M,I-1,3,K)+CC(M,IC-1,2,K))
1 +TR11*(CC(M,I-1,5,K)+CC(M,IC-1,4,K)))-(TI12*(CC(M,I,3,K)
1 +CC(M,IC,2,K))-TI11*(CC(M,I,5,K)+CC(M,IC,4,K))))
1 -WA2(I-1)
1 *((CC(M,I,1,K)+TR12*(CC(M,I,3,K)-
1 CC(M,IC,2,K))+TR11*(CC(M,I,5,K)-CC(M,IC,4,K)))
1 +(TI12*(CC(M,I-1,3,K)-CC(M,IC-1,2,K))-TI11
1 *(CC(M,I-1,5,K)-CC(M,IC-1,4,K))))
CH(M,I,K,3) = WA2(I-2)
1 *((CC(M,I,1,K)+TR12*(CC(M,I,3,K)-
1 CC(M,IC,2,K))+TR11*(CC(M,I,5,K)-CC(M,IC,4,K)))
1 +(TI12*(CC(M,I-1,3,K)-CC(M,IC-1,2,K))-TI11
1 *(CC(M,I-1,5,K)-CC(M,IC-1,4,K))))
1 +WA2(I-1)
1 *((CC(M,I-1,1,K)+TR12*(CC(M,I-1,3,K)+CC(M,IC-1,2,K))
1 +TR11*(CC(M,I-1,5,K)+CC(M,IC-1,4,K)))-(TI12*(CC(M,I,3,K)
1 +CC(M,IC,2,K))-TI11*(CC(M,I,5,K)+CC(M,IC,4,K))))
CH(M,I-1,K,4) = WA3(I-2)
1 *((CC(M,I-1,1,K)+TR12*(CC(M,I-1,3,K)+CC(M,IC-1,2,K))
1 +TR11*(CC(M,I-1,5,K)+CC(M,IC-1,4,K)))+(TI12*(CC(M,I,3,K)
1 +CC(M,IC,2,K))-TI11*(CC(M,I,5,K)+CC(M,IC,4,K))))
1 -WA3(I-1)
1 *((CC(M,I,1,K)+TR12*(CC(M,I,3,K)-
1 CC(M,IC,2,K))+TR11*(CC(M,I,5,K)-CC(M,IC,4,K)))
1 -(TI12*(CC(M,I-1,3,K)-CC(M,IC-1,2,K))-TI11
1 *(CC(M,I-1,5,K)-CC(M,IC-1,4,K))))
CH(M,I,K,4) = WA3(I-2)
1 *((CC(M,I,1,K)+TR12*(CC(M,I,3,K)-
1 CC(M,IC,2,K))+TR11*(CC(M,I,5,K)-CC(M,IC,4,K)))
1 -(TI12*(CC(M,I-1,3,K)-CC(M,IC-1,2,K))-TI11
1 *(CC(M,I-1,5,K)-CC(M,IC-1,4,K))))
1 +WA3(I-1)
1 *((CC(M,I-1,1,K)+TR12*(CC(M,I-1,3,K)+CC(M,IC-1,2,K))
1 +TR11*(CC(M,I-1,5,K)+CC(M,IC-1,4,K)))+(TI12*(CC(M,I,3,K)
1 +CC(M,IC,2,K))-TI11*(CC(M,I,5,K)+CC(M,IC,4,K))))
CH(M,I-1,K,5) = WA4(I-2)
1 *((CC(M,I-1,1,K)+TR11*(CC(M,I-1,3,K)+CC(M,IC-1,2,K))
1 +TR12*(CC(M,I-1,5,K)+CC(M,IC-1,4,K)))+(TI11*(CC(M,I,3,K)
1 +CC(M,IC,2,K))+TI12*(CC(M,I,5,K)+CC(M,IC,4,K))))
1 -WA4(I-1)
1 *((CC(M,I,1,K)+TR11*(CC(M,I,3,K)-CC(M,IC,2,K))
1 +TR12*(CC(M,I,5,K)-CC(M,IC,4,K)))-(TI11*(CC(M,I-1,3,K)
1 -CC(M,IC-1,2,K))+TI12*(CC(M,I-1,5,K)-CC(M,IC-1,4,K))))
CH(M,I,K,5) = WA4(I-2)
1 *((CC(M,I,1,K)+TR11*(CC(M,I,3,K)-CC(M,IC,2,K))
1 +TR12*(CC(M,I,5,K)-CC(M,IC,4,K)))-(TI11*(CC(M,I-1,3,K)
1 -CC(M,IC-1,2,K))+TI12*(CC(M,I-1,5,K)-CC(M,IC-1,4,K))))
1 +WA4(I-1)
1 *((CC(M,I-1,1,K)+TR11*(CC(M,I-1,3,K)+CC(M,IC-1,2,K))
1 +TR12*(CC(M,I-1,5,K)+CC(M,IC-1,4,K)))+(TI11*(CC(M,I,3,K)
1 +CC(M,IC,2,K))+TI12*(CC(M,I,5,K)+CC(M,IC,4,K))))
1002 CONTINUE
102 CONTINUE
103 CONTINUE
RETURN
END
SUBROUTINE VRADBG (MP,IDO,IP,L1,IDL1,CC,C1,C2,CH,CH2,
C
C VRFFTPK, VERSION 1, AUGUST 1985
C
* MDIMC,WA)
DIMENSION CH(MDIMC,IDO,L1,IP) ,CC(MDIMC,IDO,IP,L1) ,
1 C1(MDIMC,IDO,L1,IP) ,C2(MDIMC,IDL1,IP),
2 CH2(MDIMC,IDL1,IP) ,WA(IDO*(IP-1))
!originally WA(IDO), but if I read the code correctly, it should be IDO*(IP-1) large, with WA(IDO) I do get mem-bound errors, L. de Wit 26-8-2024
TPI=2.*PIMACH(1.0)
ARG = TPI/FLOAT(IP)
DCP = COS(ARG)
DSP = SIN(ARG)
IDP2 = IDO+2
NBD = (IDO-1)/2
IPP2 = IP+2
IPPH = (IP+1)/2
IF (IDO .LT. L1) GO TO 103
DO 102 K=1,L1
DO 101 I=1,IDO
DO 1001 M=1,MP
CH(M,I,K,1) = CC(M,I,1,K)
1001 CONTINUE
101 CONTINUE
102 CONTINUE
GO TO 106
103 DO 105 I=1,IDO
DO 104 K=1,L1
DO 1004 M=1,MP
CH(M,I,K,1) = CC(M,I,1,K)
1004 CONTINUE
104 CONTINUE
105 CONTINUE
106 DO 108 J=2,IPPH
JC = IPP2-J
J2 = J+J
DO 107 K=1,L1
DO 1007 M=1,MP
CH(M,1,K,J) = CC(M,IDO,J2-2,K)+CC(M,IDO,J2-2,K)
CH(M,1,K,JC) = CC(M,1,J2-1,K)+CC(M,1,J2-1,K)
1007 CONTINUE
107 CONTINUE
108 CONTINUE
IF (IDO .EQ. 1) GO TO 116
IF (NBD .LT. L1) GO TO 112
DO 111 J=2,IPPH
JC = IPP2-J
DO 110 K=1,L1
DO 109 I=3,IDO,2
IC = IDP2-I
DO 1009 M=1,MP
CH(M,I-1,K,J) = CC(M,I-1,2*J-1,K)+CC(M,IC-1,2*J-2,K)
CH(M,I-1,K,JC) = CC(M,I-1,2*J-1,K)-CC(M,IC-1,2*J-2,K)
CH(M,I,K,J) = CC(M,I,2*J-1,K)-CC(M,IC,2*J-2,K)
CH(M,I,K,JC) = CC(M,I,2*J-1,K)+CC(M,IC,2*J-2,K)
1009 CONTINUE
109 CONTINUE
110 CONTINUE
111 CONTINUE
GO TO 116
112 DO 115 J=2,IPPH
JC = IPP2-J
DO 114 I=3,IDO,2
IC = IDP2-I
DO 113 K=1,L1
DO 1013 M=1,MP
CH(M,I-1,K,J) = CC(M,I-1,2*J-1,K)+CC(M,IC-1,2*J-2,K)
CH(M,I-1,K,JC) = CC(M,I-1,2*J-1,K)-CC(M,IC-1,2*J-2,K)
CH(M,I,K,J) = CC(M,I,2*J-1,K)-CC(M,IC,2*J-2,K)
CH(M,I,K,JC) = CC(M,I,2*J-1,K)+CC(M,IC,2*J-2,K)
1013 CONTINUE
113 CONTINUE
114 CONTINUE
115 CONTINUE
116 AR1 = 1.
AI1 = 0.
DO 120 L=2,IPPH
LC = IPP2-L
AR1H = DCP*AR1-DSP*AI1
AI1 = DCP*AI1+DSP*AR1
AR1 = AR1H
DO 117 IK=1,IDL1
DO 1017 M=1,MP
C2(M,IK,L) = CH2(M,IK,1)+AR1*CH2(M,IK,2)
C2(M,IK,LC) = AI1*CH2(M,IK,IP)
1017 CONTINUE
117 CONTINUE
DC2 = AR1
DS2 = AI1
AR2 = AR1
AI2 = AI1
DO 119 J=3,IPPH
JC = IPP2-J
AR2H = DC2*AR2-DS2*AI2
AI2 = DC2*AI2+DS2*AR2
AR2 = AR2H
DO 118 IK=1,IDL1
DO 1018 M=1,MP
C2(M,IK,L) = C2(M,IK,L)+AR2*CH2(M,IK,J)
C2(M,IK,LC) = C2(M,IK,LC)+AI2*CH2(M,IK,JC)
1018 CONTINUE
118 CONTINUE
119 CONTINUE
120 CONTINUE
DO 122 J=2,IPPH
DO 121 IK=1,IDL1
DO 1021 M=1,MP
CH2(M,IK,1) = CH2(M,IK,1)+CH2(M,IK,J)
1021 CONTINUE
121 CONTINUE
122 CONTINUE
DO 124 J=2,IPPH
JC = IPP2-J
DO 123 K=1,L1
DO 1023 M=1,MP
CH(M,1,K,J) = C1(M,1,K,J)-C1(M,1,K,JC)
CH(M,1,K,JC) = C1(M,1,K,J)+C1(M,1,K,JC)
1023 CONTINUE
123 CONTINUE
124 CONTINUE
IF (IDO .EQ. 1) GO TO 132
IF (NBD .LT. L1) GO TO 128
DO 127 J=2,IPPH
JC = IPP2-J
DO 126 K=1,L1
DO 125 I=3,IDO,2
DO 1025 M=1,MP
CH(M,I-1,K,J) = C1(M,I-1,K,J)-C1(M,I,K,JC)