diff --git a/CHANGELOG.md b/CHANGELOG.md index a19b53fd8..855c239a4 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -23,6 +23,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), - Introduced a writing layer in native engines where relies on the writing interface to process IO. (#2241)[https://github.com/opensearch-project/k-NN/pull/2241] - Allow method parameter override for training based indices (#2290) https://github.com/opensearch-project/k-NN/pull/2290] - Optimizes lucene query execution to prevent unnecessary rewrites (#2305)[https://github.com/opensearch-project/k-NN/pull/2305] +- Use one formula to calculate cosine similarity (#2357)[https://github.com/opensearch-project/k-NN/pull/2357] ### Bug Fixes * Fixing the bug when a segment has no vector field present for disk based vector search (#2282)[https://github.com/opensearch-project/k-NN/pull/2282] * Allow validation for non knn index only after 2.17.0 (#2315)[https://github.com/opensearch-project/k-NN/pull/2315] diff --git a/src/main/java/org/opensearch/knn/index/SpaceType.java b/src/main/java/org/opensearch/knn/index/SpaceType.java index abe265a01..5d90071e8 100644 --- a/src/main/java/org/opensearch/knn/index/SpaceType.java +++ b/src/main/java/org/opensearch/knn/index/SpaceType.java @@ -60,9 +60,21 @@ public float scoreToDistanceTranslation(float score) { } }, COSINESIMIL("cosinesimil") { + /** + * Cosine similarity has range of [-1, 1] where -1 represents vectors are at diametrically opposite, and 1 is where + * they are identical in direction and perfectly similar. In Lucene, scores have to be in the range of [0, Float.MAX_VALUE]. + * Hence, to move the range from [-1, 1] to [ 0, Float.MAX_VALUE], we convert using following formula which is adopted + * by Lucene as mentioned here + * https://github.com/apache/lucene/blob/0494c824e0ac8049b757582f60d085932a890800/lucene/core/src/java/org/apache/lucene/index/VectorSimilarityFunction.java#L73 + * We expect raw score = 1 - cosine(x,y), if underlying library returns different range or other than expected raw score, + * they should override this method to either provide valid range or convert raw score to the format as 1 - cosine and call this method + * + * @param rawScore score returned from underlying library + * @return Lucene scaled score + */ @Override public float scoreTranslation(float rawScore) { - return 1 / (1 + rawScore); + return Math.max((2.0F - rawScore) / 2.0F, 0.0F); } @Override diff --git a/src/main/java/org/opensearch/knn/plugin/script/KNNScoringSpace.java b/src/main/java/org/opensearch/knn/plugin/script/KNNScoringSpace.java index 71616c9fd..9744796c6 100644 --- a/src/main/java/org/opensearch/knn/plugin/script/KNNScoringSpace.java +++ b/src/main/java/org/opensearch/knn/plugin/script/KNNScoringSpace.java @@ -144,7 +144,12 @@ public CosineSimilarity(Object query, MappedFieldType fieldType) { protected BiFunction getScoringMethod(final float[] processedQuery) { SpaceType.COSINESIMIL.validateVector(processedQuery); float qVectorSquaredMagnitude = getVectorMagnitudeSquared(processedQuery); - return (float[] q, float[] v) -> 1 + KNNScoringUtil.cosinesimilOptimized(q, v, qVectorSquaredMagnitude); + // To be consistent, we will be using same formula used by lucene as mentioned below + // https://github.com/apache/lucene/blob/0494c824e0ac8049b757582f60d085932a890800/lucene/core/src/java/org/apache/lucene/index/VectorSimilarityFunction.java#L73 + return (float[] q, float[] v) -> Math.max( + (1.0F + KNNScoringUtil.cosinesimilOptimized(q, v, qVectorSquaredMagnitude)) / 2.0F, + 0.0F + ); } } diff --git a/src/test/java/org/opensearch/knn/index/NmslibIT.java b/src/test/java/org/opensearch/knn/index/NmslibIT.java index 8ca436bf4..e2e7613a2 100644 --- a/src/test/java/org/opensearch/knn/index/NmslibIT.java +++ b/src/test/java/org/opensearch/knn/index/NmslibIT.java @@ -195,6 +195,64 @@ public void testEndToEnd() throws Exception { fail("Graphs are not getting evicted"); } + public void testEndToEnd_withApproxAndExactSearch_inSameIndex_ForCosineSpaceType() throws Exception { + String indexName = "test-index-1"; + String fieldName = "test-field-1"; + SpaceType spaceType = SpaceType.COSINESIMIL; + Integer dimension = testData.indexData.vectors[0].length; + + // Create an index + XContentBuilder builder = XContentFactory.jsonBuilder() + .startObject() + .startObject("properties") + .startObject(fieldName) + .field("type", "knn_vector") + .field("dimension", dimension) + .field(KNNConstants.METHOD_PARAMETER_SPACE_TYPE, spaceType.getValue()) + .startObject(KNNConstants.KNN_METHOD) + .field(KNNConstants.NAME, KNNConstants.METHOD_HNSW) + .field(KNNConstants.KNN_ENGINE, KNNEngine.NMSLIB.getName()) + .endObject() + .endObject() + .endObject() + .endObject(); + + Map mappingMap = xContentBuilderToMap(builder); + String mapping = builder.toString(); + + createKnnIndex(indexName, buildKNNIndexSettings(0), mapping); + + // Index one document + addKnnDoc(indexName, randomAlphaOfLength(5), fieldName, Floats.asList(testData.indexData.vectors[0]).toArray()); + + // Assert we have the right number of documents in the index + refreshAllIndices(); + assertEquals(1, getDocCount(indexName)); + // update threshold setting to skip building graph + updateIndexSettings(indexName, Settings.builder().put(KNNSettings.INDEX_KNN_ADVANCED_APPROXIMATE_THRESHOLD, -1)); + // add duplicate document with different id + addKnnDoc(indexName, randomAlphaOfLength(5), fieldName, Floats.asList(testData.indexData.vectors[0]).toArray()); + assertEquals(2, getDocCount(indexName)); + final int k = 2; + // search index + Response response = searchKNNIndex( + indexName, + KNNQueryBuilder.builder().fieldName(fieldName).vector(testData.queries[0]).k(k).build(), + k + ); + String responseBody = EntityUtils.toString(response.getEntity()); + List knnResults = parseSearchResponse(responseBody, fieldName); + assertEquals(k, knnResults.size()); + + List actualScores = parseSearchResponseScore(responseBody, fieldName); + + // both document should have identical score + assertEquals(actualScores.get(0), actualScores.get(1), 0.001); + + // Delete index + deleteKNNIndex(indexName); + } + @SneakyThrows private void validateSearch( final String indexName, diff --git a/src/test/java/org/opensearch/knn/plugin/script/KNNScoringSpaceTests.java b/src/test/java/org/opensearch/knn/plugin/script/KNNScoringSpaceTests.java index 4fc549d6b..99e847eea 100644 --- a/src/test/java/org/opensearch/knn/plugin/script/KNNScoringSpaceTests.java +++ b/src/test/java/org/opensearch/knn/plugin/script/KNNScoringSpaceTests.java @@ -10,6 +10,7 @@ import java.util.Locale; import lombok.SneakyThrows; +import org.apache.lucene.index.VectorSimilarityFunction; import org.opensearch.index.mapper.MappedFieldType; import org.opensearch.knn.KNNTestCase; import org.opensearch.knn.index.engine.KNNMethodContext; @@ -86,7 +87,11 @@ public void testCosineSimilarity_whenValid_thenSucceed() { getMappingConfigForMethodMapping(knnMethodContext, 3) ); KNNScoringSpace.CosineSimilarity cosineSimilarity = new KNNScoringSpace.CosineSimilarity(arrayListQueryObject, fieldType); - assertEquals(2F, cosineSimilarity.getScoringMethod().apply(arrayFloat2, arrayFloat), 0.1F); + assertEquals( + VectorSimilarityFunction.COSINE.compare(arrayFloat2, arrayFloat), + cosineSimilarity.getScoringMethod().apply(arrayFloat2, arrayFloat), + 0.1F + ); // invalid zero vector final List queryZeroVector = List.of(0.0f, 0.0f, 0.0f);