MindOCR inference supports Ascend310/Ascend310P devices, supports MindSpore Lite inference backend, integrates text detection, angle classification, and text recognition, implements end-to-end OCR inference process, and optimizes inference performance using pipeline parallelism.
MindOCR supported models can find in MindOCR models list,PPOCR models list, You can jump to the models list page to download MindIR/ONNX for converting MindSpore Lite offline models.
The overall process of MindOCR Lite inference is as follows:
graph LR;
A[MindOCR models] -- export --> B[MindIR] -- converter_lite --> C[MindSpore Lite MindIR];
D[ThirdParty models] -- xx2onnx --> E[ONNX] -- converter_lite --> C;
C --input --> F[MindOCR Infer] -- outputs --> G[Evaluation];
H[images] --input --> F[MindOCR Infer];
Please refer to Offline Inference Environment Installation.
Please refer to Model Converter Tutorial.
Enter the inference directory:cd deploy/py_infer
.
python infer.py \
--input_images_dir=/path/to/images \
--det_model_path=/path/to/mindir/dbnet_resnet50.mindir \
--det_model_name_or_config=../../configs/det/dbnet/db_r50_icdar15.yaml \
--cls_model_path=/path/to/mindir/cls_mv3.mindir \
--cls_model_name_or_config=ch_pp_mobile_cls_v2.0 \
--rec_model_path=/path/to/mindir/crnn_resnet34.mindir \
--rec_model_name_or_config=../../configs/rec/crnn/crnn_resnet34.yaml \
--res_save_dir=det_cls_rec \
--vis_pipeline_save_dir=det_cls_rec
Note: set
--character_dict_path=/path/to/xxx_dict.txt
if not only use numbers and lowercase.
The visualization images are stored in det_cls_rec, as shown in the picture.
Visualization of text detection and recognition result
The results are saved in det_cls_rec/pipeline_results.txt in the following format:
img_182.jpg [{"transcription": "cocoa", "points": [[14.0, 284.0], [222.0, 274.0], [225.0, 325.0], [17.0, 335.0]]}, {...}]
If you don't enter the parameters related to classification, it will skip and only perform detection+recognition.
python infer.py \
--input_images_dir=/path/to/images \
--det_model_path=/path/to/mindir/dbnet_resnet50.mindir \
--det_model_name_or_config=../../configs/det/dbnet/db_r50_icdar15.yaml \
--rec_model_path=/path/to/mindir/crnn_resnet34.mindir \
--rec_model_name_or_config=../../configs/rec/crnn/crnn_resnet34.yaml \
--res_save_dir=det_rec \
--vis_pipeline_save_dir=det_rec
Note: set
--character_dict_path=/path/to/xxx_dict.txt
if not only use numbers and lowercase.
The visualization images are stored in det_rec folder, as shown in the picture.
Visualization of text detection and recognition result
The recognition results are saved in det_rec/pipeline_results.txt in the following format:
img_498.jpg [{"transcription": "keep", "points": [[819.0, 71.0], [888.0, 67.0], [891.0, 104.0], [822.0, 108.0]]}, {...}]
Run text detection alone.
python infer.py \
--input_images_dir=/path/to/images \
--det_model_path=/path/to/mindir/dbnet_resnet50.mindir \
--det_model_name_or_config=../../configs/det/dbnet/db_r50_icdar15.yaml \
--res_save_dir=det \
--vis_det_save_dir=det
The visualization results are stored in the det folder, as shown in the picture.
Visualization of text detection result
The detection results are saved in the det/det_results.txt file in the following format:
img_108.jpg [[[226.0, 442.0], [402.0, 416.0], [404.0, 433.0], [228.0, 459.0]], [...]]
Run text angle classification alone.
# cls_mv3.mindir is converted from ppocr
python infer.py \
--input_images_dir=/path/to/images \
--cls_model_path=/path/to/mindir/cls_mv3.mindir \
--cls_model_name_or_config=ch_pp_mobile_cls_v2.0 \
--res_save_dir=cls
The results will be saved in cls/cls_results.txt, with the following format:
word_867.png ["180", 0.5176]
word_1679.png ["180", 0.6226]
word_1189.png ["0", 0.9360]
Run text recognition alone.
python infer.py \
--input_images_dir=/path/to/images \
--backend=lite \
--rec_model_path=/path/to/mindir/crnn_resnet34.mindir \
--rec_model_name_or_config=../../configs/rec/crnn/crnn_resnet34.yaml \
--res_save_dir=rec
Note: set
--character_dict_path=/path/to/xxx_dict.txt
if not only use numbers and lowercase.
The results will be saved in rec/rec_results.txt, with the following format:
word_421.png "under"
word_1657.png "candy"
word_1814.png "cathay"
Details
-
Basic settings
name type default description input_images_dir str None Image or folder path for inference device str Ascend Device type, support Ascend device_id int 0 Device id backend str lite Inference backend, support lite parallel_num int 1 Number of parallel in each stage of pipeline parallelism precision_mode str None Precision mode, only supports setting by Model Conversion currently, and it takes no effect here -
Saving Result
name type default description res_save_dir str inference_results Saving dir for inference results vis_det_save_dir str None Saving dir for images of with detection boxes vis_pipeline_save_dir str None Saving dir for images of with detection boxes and text vis_font_path str None Font path for drawing text crop_save_dir str None Saving path for cropped images after detection show_log bool False Whether show log when inferring save_log_dir str None Log saving dir -
Text detection
name type default description det_model_path str None Model path for text detection det_model_name_or_config str None Model name or YAML config file path for text detection -
Text angle classification
name type default description cls_model_path str None Model path for text angle classification cls_model_name_or_config str None Model name or YAML config file path for text angle classification -
Text recognition
name type default description rec_model_path str None Model path for text recognition rec_model_name_or_config str None Model name or YAML config file path for text recognition character_dict_path str None Dict file for text recognition,default only supports numbers and lowercase
Notes:
*_model_name_or_config
can be the model name or YAML config file path, please refer to MindOCR models list,PPOCR models list.
After inference, please use the following command to evaluate the results:
python deploy/eval_utils/eval_det.py \
--gt_path=/path/to/det_gt.txt \
--pred_path=/path/to/prediction/det_results.txt
After inference, please use the following command to evaluate the results:
python deploy/eval_utils/eval_rec.py \
--gt_path=/path/to/rec_gt.txt \
--pred_path=/path/to/prediction/rec_results.txt \
--character_dict_path=/path/to/xxx_dict.txt
Please note that character_dict_path is an optional parameter, and the default dictionary only supports numbers and English lowercase.
When evaluating the PaddleOCR series models, please refer to Third-party Model Support List to use the corresponding dictionary.