forked from grbl/grbl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgcode.c
578 lines (508 loc) · 17.2 KB
/
gcode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/*
gcode.c - rs274/ngc parser.
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011 Flemming Frandsen
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* This code is inspired by the Arduino GCode Interpreter by Mike Ellery and the NIST RS274/NGC Interpreter
by Kramer, Proctor and Messina. */
#include "gcode.h"
#include <stdlib.h>
#include <string.h>
#include "nuts_bolts.h"
#include <math.h>
#include "settings.h"
#include "motion_control.h"
#include "spindle_control.h"
#include "errno.h"
#include "serial_protocol.h"
#define MM_PER_INCH (25.4)
#define NEXT_ACTION_DEFAULT 0
#define NEXT_ACTION_DWELL 1
#define NEXT_ACTION_GO_HOME 2
#define MOTION_MODE_SEEK 0 // G0
#define MOTION_MODE_LINEAR 1 // G1
#define MOTION_MODE_CW_ARC 2 // G2
#define MOTION_MODE_CCW_ARC 3 // G3
#define MOTION_MODE_CANCEL 4 // G80
#define PATH_CONTROL_MODE_EXACT_PATH 0
#define PATH_CONTROL_MODE_EXACT_STOP 1
#define PATH_CONTROL_MODE_CONTINOUS 2
#define PROGRAM_FLOW_RUNNING 0
#define PROGRAM_FLOW_PAUSED 1
#define PROGRAM_FLOW_COMPLETED 2
#define SPINDLE_DIRECTION_CW 0
#define SPINDLE_DIRECTION_CCW 1
typedef struct {
uint8_t status_code;
uint8_t motion_mode; /* {G0, G1, G2, G3, G80} */
uint8_t inverse_feed_rate_mode; /* G93, G94 */
uint8_t inches_mode; /* 0 = millimeter mode, 1 = inches mode {G20, G21} */
uint8_t absolute_mode; /* 0 = relative motion, 1 = absolute motion {G90, G91} */
uint8_t program_flow;
int spindle_direction;
double feed_rate, seek_rate; /* Millimeters/second */
double position[3]; /* Where the interpreter considers the tool to be at this point in the code */
uint8_t tool;
int16_t spindle_speed; /* RPM/100 */
uint8_t plane_axis_0, plane_axis_1, plane_axis_2; // The axes of the selected plane
} parser_state_t;
static parser_state_t gc;
#define FAIL(status) gc.status_code = status;
int read_double(char *line, // <- string: line of RS274/NGC code being processed
int *char_counter, // <- pointer to a counter for position on the line
double *double_ptr); // <- pointer to double to be read
int next_statement(char *letter, double *double_ptr, char *line,
int *char_counter);
void select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
{
gc.plane_axis_0 = axis_0;
gc.plane_axis_1 = axis_1;
gc.plane_axis_2 = axis_2;
}
void gc_init()
{
memset(&gc, 0, sizeof(gc));
gc.feed_rate = settings.default_feed_rate / 60;
gc.seek_rate = settings.default_seek_rate / 60;
select_plane(X_AXIS, Y_AXIS, Z_AXIS);
gc.absolute_mode = TRUE;
}
float to_millimeters(double value)
{
return (gc.inches_mode ? (value * MM_PER_INCH) : value);
}
// Find the angle in radians of deviance from the positive y axis. negative angles to the left of y-axis,
// positive to the right.
double theta(double x, double y)
{
double theta = atan(x / fabs(y));
if (y > 0) {
return (theta);
} else {
if (theta > 0) {
return (M_PI - theta);
} else {
return (-M_PI - theta);
}
}
}
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
// characters and signed floating point values (no whitespace).
uint8_t gc_execute_line(char *line)
{
int char_counter = 0;
char letter;
double value;
double unit_converted_value;
double inverse_feed_rate = -1; // negative inverse_feed_rate means no inverse_feed_rate specified
int radius_mode = FALSE;
uint8_t absolute_override = FALSE; /* 1 = absolute motion for this block only {G53} */
uint8_t next_action = NEXT_ACTION_DEFAULT; /* The action that will be taken by the parsed line */
double target[3], offset[3];
double p = 0, r = 0;
int int_value;
clear_vector(target);
clear_vector(offset);
gc.status_code = GCSTATUS_OK;
// Disregard comments and block delete
if (line[0] == '(') {
return (gc.status_code);
}
if (line[0] == '/') {
char_counter++;
} // ignore block delete
// If the line starts with an '$' it is a configuration-command
if (line[0] == '$') {
// Parameter lines are on the form '$4=374.3' or '$' to dump current settings
char_counter = 1;
if (line[char_counter] == 0) {
settings_dump();
return (GCSTATUS_OK);
}
read_double(line, &char_counter, &p);
if (line[char_counter++] != '=') {
return (GCSTATUS_UNSUPPORTED_STATEMENT);
}
read_double(line, &char_counter, &value);
if (line[char_counter] != 0) {
return (GCSTATUS_UNSUPPORTED_STATEMENT);
}
settings_store_setting(p, value);
return (gc.status_code);
}
/* We'll handle this as g-code. First: parse all statements */
// Pass 1: Commands
while (next_statement(&letter, &value, line, &char_counter)) {
int_value = trunc(value);
switch (letter) {
case 'G':
switch (int_value) {
case 0:
gc.motion_mode = MOTION_MODE_SEEK;
break;
case 1:
gc.motion_mode = MOTION_MODE_LINEAR;
break;
#ifndef CFG_TINY
case 2:
gc.motion_mode = MOTION_MODE_CW_ARC;
break;
case 3:
gc.motion_mode = MOTION_MODE_CCW_ARC;
break;
#endif
case 4:
next_action = NEXT_ACTION_DWELL;
break;
case 17:
select_plane(X_AXIS, Y_AXIS, Z_AXIS);
break;
case 18:
select_plane(X_AXIS, Z_AXIS, Y_AXIS);
break;
case 19:
select_plane(Y_AXIS, Z_AXIS, X_AXIS);
break;
case 20:
gc.inches_mode = TRUE;
break;
case 21:
gc.inches_mode = FALSE;
break;
case 28:
case 30:
next_action = NEXT_ACTION_GO_HOME;
break;
case 53:
absolute_override = TRUE;
break;
case 80:
gc.motion_mode = MOTION_MODE_CANCEL;
break;
case 90:
gc.absolute_mode = TRUE;
break;
case 91:
gc.absolute_mode = FALSE;
break;
case 93:
gc.inverse_feed_rate_mode = TRUE;
break;
case 94:
gc.inverse_feed_rate_mode = FALSE;
break;
default:
FAIL(GCSTATUS_UNSUPPORTED_STATEMENT);
}
break;
case 'M':
switch (int_value) {
case 0:
case 1:
gc.program_flow = PROGRAM_FLOW_PAUSED;
break;
case 2:
case 30:
case 60:
gc.program_flow = PROGRAM_FLOW_COMPLETED;
break;
case 3:
gc.spindle_direction = 1;
break;
case 4:
gc.spindle_direction = -1;
break;
case 5:
gc.spindle_direction = 0;
break;
default:
FAIL(GCSTATUS_UNSUPPORTED_STATEMENT);
}
break;
case 'T':
gc.tool = trunc(value);
break;
}
if (gc.status_code) {
break;
}
}
// If there were any errors parsing this line, we will return right away with the bad news
if (gc.status_code) {
return (gc.status_code);
}
char_counter = 0;
clear_vector(offset);
memcpy(target, gc.position, sizeof(target)); // i.e. target = gc.position
// Pass 2: Parameters
while (next_statement(&letter, &value, line, &char_counter)) {
int_value = trunc(value);
unit_converted_value = to_millimeters(value);
switch (letter) {
case 'F':
if (gc.inverse_feed_rate_mode) {
inverse_feed_rate = unit_converted_value; // seconds per motion for this motion only
} else {
if (gc.motion_mode == MOTION_MODE_SEEK) {
gc.seek_rate = unit_converted_value / 60;
} else {
gc.feed_rate = unit_converted_value / 60; // millimeters pr second
}
}
break;
case 'I':
case 'J':
case 'K':
offset[letter - 'I'] = unit_converted_value;
break;
case 'P':
p = value;
break;
case 'R':
r = unit_converted_value;
radius_mode = TRUE;
break;
case 'S':
gc.spindle_speed = value;
break;
case 'X':
case 'Y':
case 'Z':
if (gc.absolute_mode || absolute_override) {
target[letter - 'X'] = unit_converted_value;
} else {
target[letter - 'X'] += unit_converted_value;
}
break;
}
}
// If there were any errors parsing this line, we will return right away with the bad news
if (gc.status_code) {
return (gc.status_code);
}
// Update spindle state
if (gc.spindle_direction) {
spindle_run(gc.spindle_direction, gc.spindle_speed);
} else {
spindle_stop();
}
// Perform any physical actions
switch (next_action) {
case NEXT_ACTION_GO_HOME:
mc_go_home();
break;
case NEXT_ACTION_DWELL:
mc_dwell(trunc(p * 1000));
break;
case NEXT_ACTION_DEFAULT:
switch (gc.motion_mode) {
case MOTION_MODE_CANCEL:
break;
case MOTION_MODE_SEEK:
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
gc.seek_rate, FALSE);
break;
case MOTION_MODE_LINEAR:
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
(gc.inverse_feed_rate_mode) ? inverse_feed_rate : gc.
feed_rate, gc.inverse_feed_rate_mode);
break;
#ifndef CFG_TINY
case MOTION_MODE_CW_ARC:
case MOTION_MODE_CCW_ARC:
if (radius_mode) {
/*
We need to calculate the center of the circle that has the designated radius and passes
through both the current position and the target position. This method calculates the following
set of equations where [x,y] is the vector from current to target position, d == magnitude of
that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the
length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point
[i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
d^2 == x^2 + y^2
h^2 == r^2 - (d/2)^2
i == x/2 - y/d*h
j == y/2 + x/d*h
O <- [i,j]
- |
r - |
- |
- | h
- |
[0,0] -> C -----------------+--------------- T <- [x,y]
| <------ d/2 ---->|
C - Current position
T - Target position
O - center of circle that pass through both C and T
d - distance from C to T
r - designated radius
h - distance from center of CT to O
Expanding the equations:
d -> sqrt(x^2 + y^2)
h -> sqrt(4 * r^2 - x^2 - y^2)/2
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
Which can be written:
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
Which we for size and speed reasons optimize to:
h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
i = (x - (y * h_x2_div_d))/2
j = (y + (x * h_x2_div_d))/2
*/
// Calculate the change in position along each selected axis
double x =
target[gc.plane_axis_0] - gc.position[gc.plane_axis_0];
double y =
target[gc.plane_axis_1] - gc.position[gc.plane_axis_1];
clear_vector(offset);
double h_x2_div_d = -sqrt(4 * r * r - x * x - y * y) / hypot(x, y); // == -(h * 2 / d)
// If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any
// real CNC, and thus - for practical reasons - we will terminate promptly:
if (isnan(h_x2_div_d)) {
FAIL(GCSTATUS_FLOATING_POINT_ERROR);
return (gc.status_code);
}
// Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
if (gc.motion_mode == MOTION_MODE_CCW_ARC) {
h_x2_div_d = -h_x2_div_d;
}
/* The counter clockwise circle lies to the left of the target direction. When offset is positive,
the left hand circle will be generated - when it is negative the right hand circle is generated.
T <-- Target position
^
Clockwise circles with this center | Clockwise circles with this center will have
will have > 180 deg of angular travel | < 180 deg of angular travel, which is a good thing!
\ | /
center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
|
|
C <-- Current position */
// Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
// even though it is advised against ever generating such circles in a single line of g-code. By
// inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
// travel and thus we get the unadvisably long arcs as prescribed.
if (r < 0) {
h_x2_div_d = -h_x2_div_d;
}
// Complete the operation by calculating the actual center of the arc
offset[gc.plane_axis_0] = (x - (y * h_x2_div_d)) / 2;
offset[gc.plane_axis_1] = (y + (x * h_x2_div_d)) / 2;
}
/*
This segment sets up an clockwise or counterclockwise arc from the current position to the target position around
the center designated by the offset vector. All theta-values measured in radians of deviance from the positive
y-axis.
| <- theta == 0
* * *
* *
* *
* O ----T <- theta_end (e.g. 90 degrees: theta_end == PI/2)
* /
C <- theta_start (e.g. -145 degrees: theta_start == -PI*(3/4))
*/
// calculate the theta (angle) of the current point
double theta_start =
theta(-offset[gc.plane_axis_0], -offset[gc.plane_axis_1]);
// calculate the theta (angle) of the target point
double theta_end =
theta(target[gc.plane_axis_0] - offset[gc.plane_axis_0] -
gc.position[gc.plane_axis_0],
target[gc.plane_axis_1] - offset[gc.plane_axis_1] -
gc.position[gc.plane_axis_1]);
// ensure that the difference is positive so that we have clockwise travel
if (theta_end < theta_start) {
theta_end += 2 * M_PI;
}
double angular_travel = theta_end - theta_start;
// Invert angular motion if the g-code wanted a counterclockwise arc
if (gc.motion_mode == MOTION_MODE_CCW_ARC) {
angular_travel = angular_travel - 2 * M_PI;
}
// Find the radius
double radius =
hypot(offset[gc.plane_axis_0], offset[gc.plane_axis_1]);
// Calculate the motion along the depth axis of the helix
double depth =
target[gc.plane_axis_2] - gc.position[gc.plane_axis_2];
// Trace the arc
mc_arc(theta_start, angular_travel, radius, depth,
gc.plane_axis_0, gc.plane_axis_1, gc.plane_axis_2,
(gc.inverse_feed_rate_mode) ? inverse_feed_rate : gc.
feed_rate, gc.inverse_feed_rate_mode, gc.position);
// Finish off with a line to make sure we arrive exactly where we think we are
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
(gc.inverse_feed_rate_mode) ? inverse_feed_rate : gc.
feed_rate, gc.inverse_feed_rate_mode);
break;
#endif
}
}
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
memcpy(gc.position, target, sizeof(double) * 3); // gc.position[] = target[];
return (gc.status_code);
}
// Parses the next statement and leaves the counter on the first character following
// the statement. Returns 1 if there was a statements, 0 if end of string was reached
// or there was an error (check state.status_code).
int next_statement(char *letter, double *double_ptr, char *line,
int *char_counter)
{
if (line[*char_counter] == 0) {
return (0); // No more statements
}
*letter = line[*char_counter];
if ((*letter < 'A') || (*letter > 'Z')) {
FAIL(GCSTATUS_EXPECTED_COMMAND_LETTER);
return (0);
}
(*char_counter)++;
if (!read_double(line, char_counter, double_ptr)) {
return (0);
};
return (1);
}
int read_double(char *line, //!< string: line of RS274/NGC code being processed
int *char_counter, //!< pointer to a counter for position on the line
double *double_ptr) //!< pointer to double to be read
{
char *start = line + *char_counter;
char *end;
*double_ptr = strtod(start, &end);
if (end == start) {
FAIL(GCSTATUS_BAD_NUMBER_FORMAT);
return (0);
};
*char_counter = end - line;
return (1);
}
/*
Intentionally not supported:
- Canned cycles
- Tool radius compensation
- A,B,C-axes
- Multiple coordinate systems
- Evaluation of expressions
- Variables
- Multiple home locations
- Probing
- Override control
group 0 = {G10, G28, G30, G92, G92.1, G92.2, G92.3} (Non modal G-codes)
group 8 = {M7, M8, M9} coolant (special case: M7 and M8 may be active at the same time)
group 9 = {M48, M49} enable/disable feed and speed override switches
group 12 = {G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3} coordinate system selection
group 13 = {G61, G61.1, G64} path control mode
*/