-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathch14-adserving.py
114 lines (74 loc) · 2.68 KB
/
ch14-adserving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import math
import random
import feedback as fb
class AdPublisher( fb.Component ):
def __init__( self, scale, min_price, relative_width=0.1 ):
self.scale = scale
self.min = min_price
self.width = relative_width
def work( self, u ):
if u <= self.min: # Price below min: no impressions
return 0
# "demand" is the number of impressions served per day
# The demand is modeled (!) as Gaussian distribution with
# a mean that depends logarithmically on the price u.
mean = self.scale*math.log( u/self.min )
demand = int( random.gauss( mean, self.width*mean ) )
return max( 0, demand ) # Impression demand is greater than zero
class AdPublisherWithWeekend( AdPublisher ):
def __init__( self, weekday, weekend, min_price, relative_width=0.1 ):
AdPublisher.__init__( self, None, min_price, relative_width )
self.weekday = weekday
self.weekend = weekend
self.t = 0 # Internal day counter
def work( self, u ):
self.t += 1
if self.t%7 < 2: # Weekend
self.scale = self.weekend
else:
self.scale = self.weekday
return AdPublisher.work( self, u )
# ------------------------------------------------------------
def statictest():
fb.static_test( AdPublisher, (100,2), 20, 100, 10, 5000 )
def closedloop( kp, ki, f=fb.Identity() ):
def setpoint( t ):
if t > 1000:
return 125
return 100
k = 1.0/20.0
p = AdPublisher( 100, 2 )
c = fb.PidController( k*kp, k*ki )
fb.closed_loop( setpoint, c, p, returnfilter=f )
accumul_goal = 0
def closedloop_accumul( kp, ki ):
def setpoint( t ):
global accumul_goal
if t > 1000:
accumul_goal += 125
else:
accumul_goal += 100
return accumul_goal
k = 1.0/20.0
p = AdPublisher( 100, 2 )
c = fb.PidController( k*kp, k*ki )
fb.closed_loop( setpoint, c, p, returnfilter=fb.Integrator() )
def specialsteptest():
p = AdPublisher( 100, 2 )
f = fb.RecursiveFilter(0.05)
for t in range( 500 ):
r = 5.50
u = r
y = p.work( u )
z = f.work( y )
print t, t*fb.DT, r, 0, u, u, y, z, p.monitoring()
quit()
# ------------------------------------------------------------
if __name__ == '__main__':
fb.DT = 1
# statictest()
# closedloop( 0.5, 0.25 ) # default
# closedloop( 0.0, 0.25 ) # w/o prop ctrl
# closedloop( 0.0, 1.75 ) # ringing
# closedloop( 1.0, 0.125, fb.RecursiveFilter(0.125) ) #
# closedloop_accumul( 0.5, 0.125 )