-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathretriever.py
179 lines (150 loc) · 6.16 KB
/
retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import json
import os
import time
from argparse import ArgumentParser
from glob import glob
from pathlib import Path
import torch
import torch.nn.functional as F
from config import TDArgs
from gen_pr_items import PR_ITEMS
from llama import Llama
from tokenizer import Tokenizer
REPO_ROOT = Path(__file__).resolve().parent
class Retriever:
"""
Generate embedding for an item based using the model and evaluate it against
an experiment
"""
def __init__(self, experiment_name, pr_parse_format):
self.experiment_name = experiment_name
self.config = TDArgs()
assets_path = os.path.join("assets", self.experiment_name)
self.items = PR_ITEMS[pr_parse_format]()
self.output_filename = (
f"{self.experiment_name}-{pr_parse_format.lower()}-output.json"
)
# Init Rank/Device
try:
self.local_rank = int(os.environ["LOCAL_RANK"])
self.world_size = int(os.environ["WORLD_SIZE"])
except KeyError:
# LOCAL_RANK may not be set if torchrun/torchx is not being used
self.local_rank = 0
self.world_size = 1
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# Get the list of artifacts:
# 1. Indexes of unittests generated by indexer (*.pt)
# 2. Mapping from indices to unittest names (*.json)
embeddings_files = glob(f"{assets_path}/unittest_index_*.pt")
mapping_files = glob(f"{assets_path}/unittest_index_mapping_*.json")
# Sort the above lists
embeddings_files = sorted(embeddings_files)
mapping_files = sorted(mapping_files)
# Read the artifact files and concatenate them into:
# 1. self.embeddings - with the entire index as a single pytorch tensor
# 2. self.unittest_names - a single Dict of the form {idx: test_name}
embeddings = []
self.unittest_names = []
for i in range(len(embeddings_files)):
embeddings.append(torch.load(embeddings_files[i]))
with open(mapping_files[i]) as f:
test_map = json.load(f)
self.unittest_names.extend(test_map["mapping"])
self.embeddings = torch.cat(embeddings).to(self.device)
print(self.embeddings.shape)
# self.tokenizer = Tokenizer("bert-base-uncased")
# self.model = AutoModelForCausalLM.from_pretrained(
# "bert-base-uncased"
# ).to("cuda:0")
generator = Llama.build(
ckpt_dir=os.path.expanduser(self.config.model_ckpt_dir),
tokenizer_path=os.path.expanduser(self.config.tokenizer_path),
max_seq_len=self.config.max_context_len,
max_batch_size=self.config.max_batch_size,
use_kv_cache=False,
model_parallel_size=1,
)
self.model = generator.model.to(self.device)
self.tokenizer = Tokenizer(self.config)
def retrieve(self) -> None:
# parse and tokenize input (function from a file)
# run model forward on each chunk of the embeddings
# cosine similarity per chunk
# Returns a dictionary mapping test name to a score
self.model.eval()
with torch.autocast(
self.device
): # needed for cpu inference? something about half floats
with torch.no_grad():
mapping = {}
for item in self.items:
tensor = torch.full(
(1, self.config.max_context_len),
self.tokenizer.pad_id,
dtype=torch.long,
)
tokens = self.tokenizer.encode(item)
tokens = tokens[: self.config.max_context_len]
tensor[0, : len(tokens)] = torch.tensor(
tokens, dtype=torch.long
)
attn_mask = torch.where(
tensor == self.tokenizer.pad_id, 0.0, 1.0
)
tensor = tensor.to(self.device)
attn_mask = attn_mask.to(self.device)
_, embedding = self.model.forward(
tensor,
0,
output_last_hidden_state=True,
attn_mask=attn_mask,
)
pooled_embedding = torch.sum(embedding, dim=1)
similarity_matrix = F.cosine_similarity(
self.embeddings, pooled_embedding
)
for ind in range(similarity_matrix.shape[0]):
test = self.unittest_names[ind]
score = similarity_matrix[ind]
if test not in mapping:
mapping[test] = []
mapping[test].append(score.item())
# condense
for test, score in mapping.items():
mapping[test] = sum(score) / len(score)
self.save_outputs(mapping)
def save_outputs(self, mapping):
"""Make json file of the mapping in assets/mappings"""
os.makedirs("assets/mappings", exist_ok=True)
new_mapping = {}
for file, score in mapping.items():
new_mapping[file] = score
with open(
REPO_ROOT / "assets/mappings" / self.output_filename, "w"
) as f:
f.write(json.dumps(new_mapping))
print(f"Made output file assets/mappings/{self.output_filename}")
def main():
parser = ArgumentParser("Retriever")
parser.add_argument(
"--experiment-name",
type=str,
required=True,
help="Uses artifacts from the specified Indexer Experiment",
)
parser.add_argument(
"--pr-parse-format",
type=str,
choices=PR_ITEMS.keys(),
required=True,
help="Specify what method to parse information from a PR",
)
args = parser.parse_args()
start = time.time()
retriever = Retriever(args.experiment_name, args.pr_parse_format)
retriever.retrieve()
end = time.time()
print(f"Total time to retreieve: {end-start} seconds")
if __name__ == "__main__":
main()