Skip to content

Latest commit

 

History

History
81 lines (64 loc) · 2.44 KB

File metadata and controls

81 lines (64 loc) · 2.44 KB

Python Documentation Summary

1. Introduction to Python

  • Python: High-level, interpreted, and dynamically-typed programming language.
  • Key Features:
    • Easy to learn and use.
    • Extensive standard library.
    • Cross-platform compatibility.
    • Supports multiple programming paradigms (object-oriented, functional, procedural).

2. Basic Concepts

  • Variables: Store data values (e.g., x = 5).
  • Data Types: int, float, str, list, tuple, dict, set, bool, etc.
  • Control Flow:
    • Conditional statements: if, elif, else.
    • Loops: for, while.
  • Functions: Define reusable code with def.
  • Classes & Objects: Support object-oriented programming with class.

3. Python Standard Library

  • OS and System:
    • os: Operating system interfaces.
    • sys: System-specific parameters and functions.
  • File Handling:
    • open(), read(), write(), close().
  • Data Handling:
    • json: Parse JSON.
    • csv: Work with CSV files.
    • sqlite3: Work with SQLite databases.
  • Utilities:
    • math: Mathematical operations.
    • random: Generate random numbers.
    • datetime: Handle date and time.

4. Advanced Concepts

  • Modules & Packages:
    • Use import to include libraries.
    • Structure reusable code with packages.
  • Error Handling:
    • try, except, finally for exceptions.
  • Iterators & Generators:
    • Use yield to create generators.
  • Decorators:
    • Modify function behavior with @decorator.
  • Context Managers:
    • Use with for resource management.

5. Tools and Frameworks

  • Testing: unittest, pytest.
  • Virtual Environments: venv for project-specific environments.
  • Popular Libraries:
    • Web development: flask, django.
    • Data Science: numpy, pandas, matplotlib, scikit-learn.
    • Machine Learning: tensorflow, pytorch.

6. Development Best Practices

  • PEP 8: Style guide for Python code.
  • Documentation: Use docstrings for clarity.
  • Version Control: Use Git for source control.
  • Testing: Write tests to ensure code reliability.

7. Python Ecosystem

  • PyPI: Python Package Index for third-party libraries.
  • IDEs:
    • Popular: PyCharm, VS Code, Jupyter Notebook.
  • Community:
    • Forums, mailing lists, and conferences like PyCon.

8. References